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Introduction

In the past two decades, the subject of finite model theory has attracted increasing

attention from logicians, mathematicians, and computer scientists. Though closely

related to standard model theory, the subject requires a different methodology, e.g.

a tendency to use probability arguments to prove that certain properties hold for

“almost all” finite models, and game-theoretic arguments to find finite models that

witness differences in expressive power of various logics. This essay is devoted to one

particular corner of finite model theory, 0-1 laws, which concern the probability that

a given finite structure models a certain sentence in a language.

We define C as the class of finite relational structures over some vocabulary, R,

such that their universes are initial segments of the integers, i.e. {1, 2, . . . ,m}. Be-

cause we have restricted ourselves to structures with these types of universes, we will

deal only with labeled 0-1 laws rather than unlabeled laws (for a sketch of unlabeled

laws and their proofs, see [5]). Let F be a formula, expressible in some logic L.

Definition 1. The model probability of F , µm(F ), is the fraction of structures

with m elements that satisfy F . That is:

µm(F ) =
Number of structures of size m that satisfy F

Number of all structures of size m

Definition 2. We call lim
m→∞

µm(F ) the asymptotic probability, and denote it µ(F ).

If µ(F ) = 1, we say that F is almost surely true on C. If µ(F ) = 0, we say that F

is almost surely false on C.

For a logic L, if µ(F ) exists and is equal to 0 or 1 for every formula F expressible

in logic L, we say that L obeys a 0-1 law.

Glebsky proved that a 0-1 law holds for first-order logic in 1969 [9], but it was

proved independently in the Western world by Fagin in 1972 [8]. The question nat-
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urally turned to second-order logic. However, it was clear that a 0-1 Law could not

hold for the entirety of second-order logic, since one can formulate the statement,

‘the universe has an even number of elements’ by defining a one-to-one relation that

correlates elements of the universe to other distinct elements in the universe. In fact,

we can do this with a single existential second-order quantifier. The asymptotic prob-

ability of this sentence will not converge because it will oscillate between 0 and 1.

Thus, the law does not hold.

The inquiry into the 0-1 laws thus turned to certain fragments of second-order

logic, and whether these fragments obey a 0-1 law. We will look at two different

fragments of Σ1
1 sentences, which are defined by their first-order quantifier prefixes.

Consider the following three classes of first-order sentences, where ϕ is a formula with

no quantifiers:

• Bernays-Schönfinkel class: ∃ · · · ∃∀ · · · ∀(ϕ)

• Ackermann class: ∃ · · · ∃∀∃ · · · ∃(ϕ)

• Gödel class: ∃ · · · ∃∀∀∃ · · · ∃(ϕ)

The first few results of finite model theory regarding 0-1 laws suggested a paral-

lel between decidability for the first-order class of sentences and 0-1 laws for the Σ1
1

fragments defined by these prefixes. Both the Bernays-Schönfinkel and Ackermann

first-order classes were proved to be decidable in the 1920s. By the 1980s, proofs

existed for 0-1 laws of the Σ1
1 Bernays-Schönfinkel and Σ1

1 Ackermann classes. More-

over, it was proven that the Σ1
1 fragments that correspond to the minimal undecidable

first-order classes (∀∀∀∃, ∀∃∀, and ∀∀∃ with equality) did not obey 0-1 laws. The

hope for a deep connection between decidability of first-order classes and 0-1 laws for

the corresponding Σ1
1 fragments disappeared when the Gödel class without equality

was proven not to obey a 0-1 law [1], even though it is decidable [10].
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In this paper, I will devote a significant amount of attention to the Bernays-

Schönfinkel and Ackermann classes. In §2, I will give an overview of random graphs.

This background will serve as a foundation for a discussion of random structures. Of

particular importance is the countable random structure, which is essential to the

Phokion Kolaitis and Moshe Vardi proof of the 0-1 laws for the Bernays-Schönfinkel

and Ackermann classes [18]. In §3, I will discuss the standard way of proving a 0-1

law: Transfer Theorems. Then, in §4, I will present a (nearly trivial) proof for the

decidability of the Bernays-Schönfinkel first-order class, followed by a proof of a 0-1

law for the Σ1
1 Bernays-Schönfinkel class. In this treatment, I will hew closely to the

aforementioned Kolaitis and Vardi proof.

In §5, I will give a decidability proof for the Ackermann class; in §6, a proof of the

finite controllability of the Ackermann Class; and finally, in §7, a proof for the 0-1 law

for the Σ1
1 Ackermann class. After presenting the final proof, a refinement of Kolaitis

and Vardi, I shall reflect on the advantages of my proof. Finally, I will briefly remark

on Le Bars’ proof of the failure of the 0-1 law of the Gödel class (without equality),

and present Le Bars’ conjecture that revisits the hope of finding a connection between

decidability and 0-1 laws.

1 Basic Definitions and Notation

In this section, we will lay the groundwork for our model theory. It will necessarily

be brief and avoid much of the fine detail, though I will define all concepts used later.

Our language will be comprised of

• connectives: ‘∧’ (and), ‘∨’ (or), ‘¬’ (not), and ‘→’ (if...then)

• variables (x0, x1, . . . , xn, . . .),

• parentheses ‘(’ and ‘)’,
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• quantifiers ‘∀’ (for all) and ‘∃’ (exists),

• a binary relation ‘=’ (identity).

We could restrict the set of connectives to ∧ and ¬, as these are expressively

adequate, but such parsimony offers no advantages for our analysis.

We will use Greek lowercase letters ϕ, ψ, etc. to denote sentences of the language,

lowercase Roman letters from earlier in the alphabet a, b, c, d, etc. to denote elements

of the model (or instantiated variables), and lowercase Roman letters from later in

the alphabet, xi, vi,, etc. to denote variables.

Definition 3. A relational vocabulary is a finite set that consists of predicate

letters P ,Q,R, . . .S. We use R and S to denote vocabularies.

A vocabulary is traditionally defined as above, but with the addition of constants

and function signs in addition to predicate letters (also known as ‘relational symbols’).

However, our subject matter prohibits constants in any of the classes of formulas we

treat. For if c is some constant in the language, with R a unary predicate letter in the

vocabulary, then µ (Rc) = 1
2

[13]. This can be seen easily by pairing every structure

that makes Rc true with another structure that makes Rc false. Such a pairing can

be demonstrated by keeping the interpretation of c the same as in the first structure,

but re-interpreting R in the second structure to be the compliment of R in the first

structure.

Definition 4 (R-structure). A model M of a vocabulary R is:

1. A non-empty set, UM, known as the universe of M, and

2. for every k-ary relational symbol in the language R, a k-ary relation in the

universe.
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Note: For clarity, we will omit the use of UM and say ‘a ∈ M’ or ‘a is an element of

M’, whenever a ∈ UM. Such ambiguity of usage will not affect our discussion, as the

context will always be clear.

Definition 5 (Models). For a sentence ψ in the language L, we say that M models

ψ, when ψ is true in M. We denote this ‘M |= ψ’.

These two terms, ‘model’ and ‘models’, can create some confusion, as there are

two possible meanings for ‘M is a model’. The first possibility adheres more to defi-

nition 4. In this case, the sentence merely asserts that M is a structure with elements

and relations. The second possible meaning is derivative of definition 5. Under this

meaning, the sentence asserts that M models some sentence in the language. I have

differentiated them here by making the first a noun and the second a verb, though

this is not always such a clear distinction. I will use ‘structure’ for the former meaning

and ‘model’ for the latter.

2 The Random Graph and the Random Structure

The countable random structure is essential to the proof of the 0-1 laws as given by

Kolaitis and Vardi [18]. They employ the countable random structure to show that

a Transfer Theorem holds, which was shown by Fagin [8] to be equivalent to proving

that a 0-1 law holds.

We will lay the foundation for the countable random structure by discussing

random graphs. This will involve some graph theory, but the specific details of graph

theory are not our primary concern. Instead, we will refine our intuitions about

randomness and observe the general strategy of back-and-forth arguments in building

an isomorphism.

Imagine the following infinite experiment: For each pair {i, j} of distinct
positive integers, toss a fair coin to decide if 〈i, j〉 is an edge. Outcomes
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of the experiment are graphs on positive integers. What do you think is
the probability that two outcomes are isomorphic? [13]

The intuition is to say that two such graphs, determined by coin flips, could never

be isomorphic to each other. Our pre-reflective intuition of randomness tells us that

things randomly created in this way cannot be alike. If two such graphs were iso-

morphic, it would imply that every graph created in such a manner is isomorphic to

every other such graph, and we would have an equivalence class of graphs.

However, this initial intuition is incorrect. We can demonstrate the isomorphism

by building it piecemeal. Suppose we have a partial isomorphism f with finite domain,

from one outcome graph to the other. We will prove that we can extend f to f ′—a

partial isomorphism with domain one element larger than f—by way of a probability

argument. Since f is finite, let i ∈ N be such that i /∈ dom(f). To extend the

isomorphism to include i in the domain, take j /∈ ran(f). The probability that

another partial isomorphism results from extending f to f ′ with f ′(i) = j is
(

1
2

)k
, with

k = |dom(f)|. This probability results from the multiplication of the probabilities

that f ′(i) stands in the proper relations to each of the images of the elements in the

domain of f . If we select n-many such j’s, the probability that at least one of the

selected j’s is appropriate is 1 −
(
1−

(
1
2

)k
)n

. This quantity tends to 1 as n grows.

Thus, the probability of being able to extend f to f ′ to include i ∈ dom(f ′) is 1.

To build the isomorphism between the two randomly generated graphs, we start

with an empty partial isomorphism and extend it to the smallest integer not in the

domain. The probability that we can do so is 1. Next, take the smallest integer not in

the range. By the same probability argument, we can extend f again to include this

integer in the range with probability 1. Then, since the intersection of a countable

number of events with probability 1 has probability 1, we can extend the empty

partial isomorphism to a complete isomorphism using this back-and-forth technique.

We can adapt our construction of a random graph to a random construction of
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a finite structure A (the following example is taken from [7]). Let K be some class of

structures for the relational vocabulary R. We repeat the same experiment as above,

but this time for all predicates in R, rather than for integers 〈i, j〉. Let {1, . . . ,m} be

the finite universe for the structure A. We will randomly determine the truth values for

all n-ary predicates R ∈ R. For every possible selection of 〈a1, . . . , an〉 ∈ {1, . . . ,m},

for all 1 ≤ n ≤ m, we toss a fair coin to determine if R a1, . . . , an is true. Then,

µm(K) is the probability that A, the randomly created structure of size m, belongs

to K.

Rather than restrict ourselves to m many elements in the model, we will do this

an infinite number of times and call the result A, the countable random structure

over vocabulary R (we shall later show that A is unique up to isomorphism). That

is, we define A to be the result of iterating the above process for a structure with

universe equal to {1, 2, . . . , n, . . .}.

Definition 6 (n-types). An n-type for a vocabulary R is a maximally consistent

set of atomic formulas and negations of atomic formulas constructed from predicate

letters of R and variables among x1, . . . , xn.

In contrast to the usage in ordinary model theory, our n-types are quantifier-free,

and hence for any structure M and a fixed n, the number of possible n-types is finite.

In particular, the number of 1-types possible in an R-model is 2k, where k is the

number of predicate letters in R.

Definition 7 (Extension). Given t, an n-type, we say t′ extends t if t′ is an m-type

with m > n, and t ⊂ t′.

Definition 8 (Realization). The n-type realized by 〈a1, . . . , an〉 in M is the unique

n-type t such that for all ϕ ∈ t, M |= ϕ[a1, . . . , an]

The type t realized by 〈a1, . . . , an〉 is denoted t = tpM(a1, . . . , an).
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Definition 9 (Restriction). If t is an n-type, then t restricted to a variable xi is

the unique 1-type s such that for all ϕ, ϕ ∈ s ↔ ϕ(x1/xi) ∈ t.

We denote the restriction of t, an n-type, to the variable xi by [t|xi].

Definition 10 (Extension Axiom). Given an n-type t and any (n + 1)-type t′ that

extends t, there is a first order extension axiom

τ : ∀x1 · · · ∀xn(t → (∃xn+1)t
′)

Note that for n = 0, the extension axiom is simply τ : (∃x1)t, for any 1-type

t. Now let T be the set of all extension axioms. The countable random structure A

is a countable model for T . Using a back-and-forth argument similar to the one we

used earlier for random graphs, we can build in a stepwise fashion an isomorphism

between any two countable models of T . Thus, the countable random structure is

unique, up to isomorphism.

Here it will be instructive to use this property of A to prove explicitly that any

finite model can be isomorphically embedded into A, the countable random structure.

The following proof will be an argument similar to the above back-and-forth argument,

except it will only involve the “forth” direction.

Theorem 1 (Finite Embedding). Every finite model M is isomorphically embedded

in A.

Proof. Let M be a finite model, with elements b1, . . . , bm in the universe. We will

construct an isomorphism f : M −→ A by induction. In building this isomorphism,

it will be sufficient to prove that the types are isomorphic, since this will imply the

preservation of the relations in addition to the elements of the respective models.
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Base Case: For b1 ∈ M, there is an extension axiom τ ∈ T such that we can extend

the empty-type to a 1-type in any way. This is due to the randomness property of

A, which “says” that anything that can happen in the structure, does. In particular,

there is some a1 ∈ A such that tpA(a1) = tpM(b1). Set f(b1) = a1.

Inductive Step: Suppose we have a partial isomorphism f for b1, . . . , bn with n < m,

such that f(bi) = ai, for 1 ≤ i ≤ n. Let

t = tpM(b1, . . . , bn) = tpA(a1, . . . , an)

Letting t′ = tpM(b1, . . . , bn+1), there is some τ ∈ T , an extension axiom such

that

τ = ∀x1 · · · ∀xn (t → (∃xn+1)t
′)

This is essentially an instance of a more general property of A: in the model,

anything that could possibly happen, does happen. In this case, for any possible way

in which a type could be extended in A, there is an extension of the type in just that

way. Since we can extend the type, there is some an+1 ∈ A such that

tpM(b1, . . . , bn, bn+1) = tpA(a1, . . . , an, an+1)

To extend the isomorphism, set f(bn+1) = an+1. Thus, we can build an isomor-

phism for any size m, and M is isomorphic to some sub-structure of A.

There is an immediate corollary, if we let m→∞ :

Corollary 1. Any countable structure B over vocabulary R is isomorphically embed-

ded in A.
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Recall that C is defined as the class of all finite structures with universe {1, . . . ,m}

over the relational vocabulary R. We want to show that each of the extension axioms

is almost surely true on C.

Theorem 2. On the class C, for any extension axiom τ , τ is almost surely true.

Proof. For a given a1, . . . , an, c ∈ M, a structure in C, we have:

Prob [t′ 6= tpM(a1, . . . , an, c)] ≤
(

1− 1

q

)

where q is the number of all possible (n + 1)-types. Remember that q is fixed and

finite for a given n. Then,

Prob [t = tpM(a1, . . . , an) & t′ 6= tpM(a1, . . . , an, c)] ≤
(

1− 1

q

)
Now, because the universe of M = {1, . . . ,m}, for a given 〈a1, . . . , an〉

Prob

[
(@c)

(
t = tpm(a1, . . . , an) & t′ = tpM(a1, . . . , an, c)

)]
≤

(
1− 1

q

)m−n

Since there are mn different ways of choosing 〈a1, . . . , an〉,

Prob

[
(∃a1 · · · ∃an)(@c)

(
t = tpm(a1, . . . , an) & t′ = tpM(a1, . . . , an, c)

)]
≤ mn

(
1− 1

q

)m−n

However, mn
(
1− 1

q

)m−n

tends to 0 as m tends to ∞. Thus, µ(τ) = 1.

This theorem will later be useful in §4, in our proof of a 0-1 law for the Bernays-

Schönfinkel Σ1
1 class.
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3 Transfer Theorems

The standard way to prove a 0-1 law for a logic, attributed to Fagin [8] and used

by Kolaitis and Vardi [18], is to show that a Transfer Theorem holds for the logic.

Essentially, a Transfer Theorem says that for every sentence in the logic, A models

the sentence if and only if the asymptotic probability of the sentence is 1. We will

state a Transfer Theorem for first-order logic, and then prove that it holds via a

compactness argument.

Theorem 3 (Transfer Theorem: First-Order Logic). Let ϕ be any first-order

formula with relational vocabulary R. Let A be the countable random structure for

R. Then, if A |= ϕ then µ(ϕ) = 1.

Proof. Let T be the set of all extension axioms that characterize A. Because any two

countable models of T are isomorphic, and T has only infinite models, we know that

T is syntactically complete (Vaught’s Test). Then, since T is syntactically complete,

T |= ϕ. By compactness of first-order logic (remember that T is a set of first-order

sentences), we have some finite subset T0 of T that implies ϕ, or T0 |= ϕ. However,

since T0 is a finite collection of extension axioms,

µ (T0 is true in a model of size m) = 1

Thus, µ(ϕ) = 1.

Corollary 2. First-order logic obeys a 0-1 law.

Proof. Let ϕ be a first-order sentence.

If A |= ϕ, then µ(ϕ) = 1 by Theorem 3.

If A |= (¬ϕ), then µ(¬ϕ) = 1, and thus, µ(ϕ) = 0.

Under the structure A, either A |= ϕ or A |= (¬ϕ).
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We have proven that a Transfer Theorem holds for first-order logic, and therefore

that a 0-1 law holds. We want to try and extend this theorem to second-order logic,

but a Transfer Theorem cannot hold for arbitrary Σ1
1 sentences, since we can formulate

a Σ1
1 sentence, ϕ, that says, ‘There is a permutation on the universe where each

element has order 2’. In finite models, ϕ is equivalent to saying ‘The universe has an

even number of elements’. We can see that the probability µ(ϕ) will oscillate between

0 and 1 and will not converge. Yet, ϕ is true on A, the countable random structure.

A witness is the permutation that interchanges every odd number j with j + 1. This

permutation is composed entirely of elements with order 2 and is well defined for all

N. Another counterexample is the statement ‘there is a complete ordering with no

maximum element.’ This statement, also expressible as a Σ1
1 sentence, is clearly true

on A, but fails for every finite model.

However, we can prove a Transfer Theorem for the class of Π1
1 sentences, and,

conversely, the negative direction for the class of Σ1
1 sentences.

Theorem 4. Let A be the countable random structure over R, as above, and let

(∀S)Θ(S) be an arbitrary Π1
1 sentence. If A |= (∀S)Θ(S), then there is a first-order

sentence ψ over vocabulary R such that µ(ψ) = 1 and |= ψ → (∀S)Θ(S)

Thus, for every Π1
1 sentence ϕ, if A |= ϕ, then µ(ϕ) = 1.

Proof. We want to show the existence of the first-order sentence ψ as above, so assume

A |= (∀S)Θ(S). Moreover, in order to obtain a contradiction, assume T ∪ ¬Θ(S) is

satisfiable. Let B be a structure such that B |= T ∪ ¬Θ(S). Now we define B′ to

be B reduced to R. That is, B′ is B with all S-relations thrown out, retaining all of

and only the R-relations. Note that B′ ∼= A because B′ is a model for T . But then,

A |= (∃S)¬Θ(S), which is a contradiction.

Thus, T ∪¬Θ(S) is not satisfiable. Since T is composed entirely of first-order τ ’s,

by compactness there is some finite subset T ′ such that T ′∪ ¬Θ(S) is not satisfiable.
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Therefore, (
∧
T ′) −→ Θ(S) is valid. Hence, |= (

∧
T ′) −→ (∀S)Θ(S). (

∧
T ′) is our

ψ.

We have an immediate corollary to this theorem:

Corollary 3 (Negative Σ1
1 Transfer Theorem). Every Σ1

1 sentence that is false on A

has probability 0 on C.

Theorem 4 shows that every Π1
1 sentence satisfies the forward direction of a Trans-

fer Theorem. Corollary 3 establishes the negative direction of a Transfer Theorem for

Σ1
1 sentences through the contrapositive. In order to show that a 0-1 law holds for

the two fragments we will consider, it will suffice to show that if Φ is a sentence true

on A, then µ(Φ) = 1. We will prove this direction for two fragments of second-order

logic: the Σ1
1 Bernays-Schönfinkel and the Σ1

1 Ackermann classes.

4 0-1 Law for the Σ1
1 Bernays-Schönfinkel Class

Before proving the 0-1 law for the Σ1
1 Bernays-Schönfinkel class, we will proceed

through a proof that the first-order Bernays-Schönfinkel class is finitely controllable,

and hence decidable.

Theorem 5 (Bernays-Schönfinkel Finite Controllability). Let

Φ = ∃x1 · · · ∃xn∀y1 · · · ∀ymϕ(x1, . . . , xn, y1, . . . , ym)

with ϕ lacking quantifiers. If M is a model for Φ, there is a finite model M′ for

Φ. In fact, M′ is a submodel of M, with cardinality n.

Proof. Let M |= Φ. Let a1, . . . , an be elements of M that witness the existential

quantifiers. Now let M′ be M with its universe limited to a1, . . . , an. Since universal
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statements remain true under restrictions, M′ |= ∀y1 · · · ∀ymϕ(a1, . . . , an, y1, . . . , ym).

Hence, by existential generalization, M′ |= Φ.

Theorem 6 (0-1 Law for the Σ1
1 Bernays-Schönfinkel Class). Let

Θ = (∃S)(∃x1 · · · ∃xm)(∀y1 · · · ∀yn)θ(x1, . . . , xm, y1, . . . , yn,R,S)

be a Σ1
1 Bernays-Schönfinkel sentence true on the countable random structure A.

Then, there is a first-order sentence ψ over R such that µ(ψ) = 1, and

ψ → (∃S)(∃x1 · · · ∃xm)(∀y1 · · · ∀yn)θ(x1, . . . , xm, y1, . . . , yn,R,S)

is true in all finite structures. Thus, if Θ is a Σ1
1 Bernays-Schönfinkel sentence true

on A, then µ(Θ) = 1.

Proof. Let S∗ be an interpretation of S-predicates such that by adjoining them to A,

we get a structure A∗ such that

A∗ |= (∃x1 · · · ∃xm)(∀y1 · · · ∀yn)θ(x1, . . . , xm, y1, . . . , yn,R,S)

Now let a1, . . . , am ∈ A∗ be such that they witness the first-order existentially

quantified variables x1, . . . , xm. Let A0 = [A∗|(a1, . . . , am)]. We define ψ, a first-order

sentence that is a conjunction of a finite number of extension axioms. Specifically, if

we let tpA(a1, . . . , ai) = ti for all i ∈ {1, . . . ,m}, then

ψ = (∃x1)t1 ∧
m−1∧
i=1

(∀x1 · · · ∀xi(ti −→ (∃xi+1)ti+1))

ψ has the property that any model of ψ contains a substructure isomorphic to A0.

Assume B is a finite model of ψ. By Theorem 1, B is isomorphic to some

substructure of A. By including a1, . . . , am in the isomorphism at the first m steps
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of construction, we can find A′, which is a substructure of A that contains A0.

Moreover, this construction ensures that B ∼= A′. We can extend A′ to A′∗ by

adjoining to A the interpretations of S-predicates S∗, restricted to the universe of A′.

Because substructures preserve universal statements, we can conclude that

A′∗ |= (∀y1 · · · ∀yn)θ(x1, . . . , xm, y1, . . . , yn,R,S)

Then, by existential generalization of the first-order variables x1, . . . , xm and the

second-order variables in S, A′∗ |= Φ. Then, since S is no longer free, A′ |= Φ.

Finally, because A′ ∼= B, B |= Φ.

We have shown that any finite model of ψ is also a model of Θ, where ψ is a finite

conjunction of extension axioms. By Theorem 2, µ(ψ) = 1. Hence µ(Θ) = 1.

5 Decidability of the Ackermann Class

We will now present a proof of the decidability of the Ackermann class by construct-

ing a set P of 1-types that obeys certain properties in regards to their extensions

to n-types. For the purpose of clarity, this proof will concern the restricted Ack-

ermann class (∀∃ · · · ∃) rather than the full Ackermann class (∃ · · · ∃∀∃ · · · ∃). Af-

terwards, I will sketch how the argument can be extended to the full class. Let

Φ = ∀x1∃x2 . . . ∃xnϕ be a restricted Ackermann formula, with ϕ quantifier-free.

Theorem 7 (Ackermann Decidability). Φ is satisfiable if and only if there exists a

set P of 1-types with the following property (♣). For every t ∈ P, there is an n-type

t′ such that:

1. t′ extends t,

2. t′ makes ϕ true. That is, t′ truth-functionally implies ϕ, and
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3. [t′|xi] ∈ P (1 ≤ i ≤ n).

The existence of such a set P is a finitely verifiable condition, so the claim implies

decidability.

Proof. (=⇒) If Φ is satisfiable, then let M be a model that witnesses that satisfiability.

Let P be the set of 1-types realized in M. P has property (♣); if t ∈ P, let a1 be such

that tpM(a1) = t. Then, since M is a model for Φ, there are a2, . . . , an ∈ M such

that M |= ϕ(a1, . . . , an) is true. So, let t′ = tpM(a1, . . . , an). t′ satisfies conditions

1–3 of property (♣).

(⇐=) Let P be a set of 1-types that satisfy conditions 1–3 of property (♣). We will

build, by induction, a model M for Φ such that P is the set of 1-types realized in M.

Initial Step: Put an object a1 into the universe of M, denoted UM. Pick some

t ∈ P and interpret the predicate letters such that t = tpM(a1).

Inductive Step: Our inductive hypothesis states that in the model M, as con-

structed up until now, every 1-type that is realized by an element is, in fact, a member

of P.

Let b ∈ M be the earliest object put into M so far such that objects that witness

∃x2 · · · ∃xnϕ(x1/b) do not exist in M. Earliest here means placed in the universe at

the earliest step in the inductive process. Let t = tpM(b). We are guaranteed to have

t ∈ P by our inductive hypothesis. Now, let t′ be the n-type guaranteed by property

(♣) of P. Letting c2, . . . , cn ∈ M be new objects, extend the interpretation of the

predicate letters so that t = tpM(b, c2, . . . , cn). We are guaranteed that this makes ϕ

true by condition 2 of property (♣) on t′, so the ci’s are witnesses to ∃x2 · · · ∃xnϕ[x1/b].

Moreover, the inductive hypothesis remains true, since the new elements realize 1-

types in P, by condition 3 of property (♣).

By continuing along with this process through all the integers, we will create a

model for Φ.
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The Problem with Equality: There is a possible problem with our inductive

construction if we allow for our types to have formulas including equality. That is,

when we are adding elements c2, . . . , cn to the universe, we might have an n-type that

has the sentence ‘xi = xj’, with i 6= j, as one of its elements. In this case, we would

not want to add in distinct ci, cj as we do in our construction, since that would cause

our structure to model Φ no longer. A similar problem occurs if the type “says”

‘b = ci’.

This problem could be solved with additional conditions on our process, but

fortunately, there is an easier way. Dreben and Goldfarb ([6], p. 207) proved that for

every ψ, an Ackermann first-order sentence, there exists a ψ′ Ackermann first-order

sentence such that

1. The matrix of ψ′ implies xi 6= xj for i 6= j

2. ψ and ψ′ are equivalent over universes of size greater than n.

Since our model will certainly have a universe larger than n, we can ignore the pos-

sible problem with equality by assuming we are treating the equivalent ψ′ for any ψ

that has some statement of equality. A similar fix works for the full Ackermann class.

Note on the Full Ackermann Class: Let

Φ = ∃z1 · · · ∃zm∀x1∃x2 · · · ∃xnϕ

with ϕ quantifier free. We can add constants α1, . . . , αm to the language and then

instantiate z1 . . . zm by α1, . . . , αm. We consider

Φ′ = ∀x1∃x2 . . . ∃xnϕ(z1/α1, . . . , zm/αm)

which is a restricted Ackermann sentence. As before, whenever M is a model for Φ′,
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the set of 1-types realized in M (now in the language expanded by the constants)

is a suitable P. We can then go forward with the above proof, with some added

conditions on P. We sketch these conditions: if we take a subset of any t ∈ P that

consists entirely of formulas that contain only the constants—and not the variable

x1—we always get the same set s. Moreover, for each i (with 1 ≤ i ≤ m), there is a

t ∈ P such that replacing x1 in every formula in t with αi yields just that set s.

Given this suitable P, we construct a model for Φ′ using the above inductive

process, but with an alteration at the initial step. First, we introduce objects

a1, . . . , am ∈ M to be the values of the constants α1, . . . , αm and interpret the predi-

cates in a way such that M |= s. Then, from the additional conditions we have placed

on P, it follows that tpM(ai) ∈ P for 1 ≤ i ≤ m. We can then continue with our

previous proof of decidability.

6 Finite Controllability of the Ackermann Class

We will now prove that for every first-order Ackermann sentence with a model, there

is a finite model. As before, we will treat only the restricted Ackermann class, for the

purpose of expository clarity.

Theorem 8 (Ackermann Finite Controllability). For an Ackermann sentence Φ =

∀x1∃x2 · · · ∃xnϕ(x1, . . . , xn), if there is a model for Φ, then there is a finite model M

such that M |= Φ.

Proof. Let B be a model for Φ. Since there is a model for Φ, by Theorem 7, there is a

set P that has property (♣). Now we define a mapping from P to the set of n-types

guaranteed to exist by property (♣).

Definition 11. For t ∈ P, let η(t) = t′, where t′ is the n-type that witnesses property

(♣).
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Now, let Q be the range of η, and set

I = {0, 1, 2} ×Q× {2, . . . , n}.

Now, we will define a structure M with its universe equal to I by way of two rules.

Elements of the structure M will be ordered triples, a = 〈δ, s, i〉.

Rule 1: For all a ∈ M, set tpM(a) = [π2(a)|xπ3(a)].

Note that it follows from Rule 1 and Clause 3 of condition (♣) that tpM(a) ∈ P.

Rule 2: For any b, c2, . . . , cn with the following three properties:

(I) π1(c2) ≡ . . . ≡ π1(cn) ≡ π1(b) + 1 (mod 3),

(II) π3(ci) = i, for 2 ≤ i ≤ n, and

(III) There is some some s ∈ Q such that

(i) π2(c2) = . . . = π2(cn) = s

(ii) [s|x1] = tpM(b),

then,

set tpM(b, c2, . . . , cn) = s.

Insofaras the interpretations of predicate letters are not assigned by Rule 2, let

them be arbitrary, but such that they do not conflict with the interpretations set by

Rule 2.

It must be shown that Rules 1 and 2 engender no ambiguity in the assignment

of types. Assuming this has been demonstrated, we will have constructed, by way of

Rules 1 and 2, a finite model M with universe I that makes ϕ true. Let b ∈ I. There

are elements of the model c2 = 〈j, η(t), 2〉, . . . , cn = 〈j, η(t), n〉, where j ≡ π1(b) + 1
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(mod 3) and t = tpM(b), such that tpM(b, c2, . . . , cn) = η(t). Since η(t) implies ϕ,

M |= ϕ(b, c2, . . . , cn).

We must now prove that Rules 1 and 2 are not ambiguous. For some atomic

formula R ∈ R, the relational vocabulary, we might have assigned two different truth

values in two different n-types to the same d, e ∈ M, such that Rde is true in one

type, but false in another. We will prove that this cannot be the case. For simplicity,

we will concern ourselves with only dyadic predicates; the proof for n-ary predicates

proceeds along the same lines, but complicated bookkeeping of indices obscures the

proof. First, we know that d 6= e, for if d = e, Rde would be set by Rule 1, which is

clearly unambiguous. We have two possible cases of ambiguity to address:

Case 1: π1(d) = π1(e)

For this assignment to be ambiguous, it would have to be the case that {d, e} ⊂

{c2, . . . , cn} and {d, e} ⊂ {c′2, . . . , c′n}. Then, because they fall under the aegis of

Rule 2,

π2(d) = π2(e)

π3(d) 6= π3(e)

Because their π3 values are distinct, we know that d must appear in ith position

in both sets, while e must appear in the jth position. That is, d = ci = c′i where

i = π3(d), and e = cj = c′j where j = π3(e). Then, the truth value of Rde is given to

be true or false depending on whether π2(d) contains Rxixj or ¬Rxixj, respectively,

and there is no ambiguity.

Case 2:

π1(d) 6= π1(e)

Such a situation would mean either π1(e) = π1(d) + 1 (mod 3) or π1(d) = π1(e) + 1
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(mod 3). Without loss of generality, we can assume the former, which means that

d = b = b′ and e = ci = c′i, where i = π3(e). By the same argument as in Case 1, the

truth value for Rde is given by whether π2(e) contains Rx1xi or ¬Rx1xi, and there

is no ambiguity.

7 0-1 Law for the Σ1
1 Ackermann Class

Before approaching the details, we will give a survey of our proof of the 0-1 law. We

have already shown that the negative direction of a Transfer Theorem holds for all

Σ1
1 formulas by Corollary 3. That is, if we let Φ be as follows,

Φ = ∃S∀x1∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S),

we know that if A |= (¬Φ), then µ(¬Φ) = 0. To prove a 0-1 law holds for the Σ1
1

Ackermann class, it suffices to prove that if A |= Φ, then µ(Φ) = 1. Note that Φ

has predicates both in R, which are free and not quantified over, and in S, which

are quantified over. This was the case for the Bernays-Schönfinkel class as well.

However, because the earlier proof did not involve our differentiating between the

two vocabularies, we elided the differences from our discussion. We will unavoidably

be involved with these differences in our current proof, so we will have to refine our

notions of type and its related concepts.

We define an R-structure as a structure that has interpretations of only the R-

predicates. In contrast, an (R,S)-structure will be a structure with interpretations of

both R and S predicates. Because the S-predicates are quantified over, we are able

to define an interpretation of them to suit our needs. We will do this via two rules,

similar to those used in the finite controllability proof for the Ackermann Class. This

deliberate method of constructing the (R,S)-model of Φ will avoid the probabilistic
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methods needed in the Kolaitis and Vardi proof [18]. However, due to our use of both

R-types and (R,S)-types, we must extend our notation of types to avoid confusion.

An R-n-type is an n-type for the vocabulary R, whereas an (R,S)-n-type is an n-type

for the vocabulary (R,S) (cf. Definition 6).

Definition 12. If M is an R-structure or an (R,S)-structure, then tpR
M(a1, . . . , an)

is the unique R-n-type realized by 〈a1, . . . , an〉 in M. If M is an (R,S)-structure,

tp
(R,S)
M (a1, . . . , an) is the unique (R,S)-n-type realized by 〈a1, . . . , an〉 in M.

Definition 13 (Reduct). We say an R-type tR is the reduct of an R,S-type t(R,S),

if tR ⊆ t(R,S), tR has no S-predicates, and for every R-formula f in t(R,S), f is also

in tR.

[t|R] denotes a reduct of t to R. Essentially, the reduct is obtained by taking an

(R,S)-type and throwing out any formulae with an S-predicate.

Returning to the Transfer Theorem, the direction that we must prove is:

If A |= Φ, then µ(Φ) = 1

Assume that A |= Φ. We will define a condition (F), and show that (F) is

almost surely true for C, the class of all finite R-models. That is, µ(F) = 1. Given

a finite R-structure M with condition (F) such that M |= Φ, we will show that it is

possible to extend M to an (R,S)-structure M∗ by interpreting the S-predicates in

such a way that M∗ |= ∀x1∃x2 · · · ∃xnϕ(x1, . . . , xn,R,S). Thus, µ(Φ) = 1.

This proof will be for the restricted Ackermann sentence that has no existential

quantifiers before the universal quantifier. Later, we will illustrate how the proof can

be adapted to the unrestricted class.
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Claim (Transfer Theorem for Σ1
1 Ackermann Class). If A |= Φ, then µ(Φ) = 1.

Proof. We want to define a way of interpreting S-predicates for the Ackermann sen-

tence that makes ϕ true for both the R- and the S-predicates. So, since A |= Φ, let

A∗ be the extension of A such that

A∗ |= ∀x1∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S).

We can define P as the set of 1-types realized in A∗. P then is a set of “proper”

1-types in the vocabulary (R,S). They are proper in that they are the 1-types

that do not contradict the formula ∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S). Formally, P =

{tp(R,S)
A∗ (a)| a ∈ A}.

Since A∗ |= ∀x1∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S), a first-order Ackermann sen-

tence, the set P will have property (♣). Furthermore, since A is the countable

random R-structure, for every R-1-type t0 ∈ A, there will be an (R,S)-1-type t ∈ P

such that [t|R] = t0. We are guaranteed such a t because there is some a ∈ A such

that t0 = tpR
M(a), and we can take t to be the (R,S)-n-type such that t = tp

(R,S)
A∗ (a).

Throughout the proof, M will be some R-structure with universe {1, . . . ,m} that has

property (F), and M∗ will be an (R,S)-structures we will construct by interpreting

S-predicates.

We now define η(t), the function that maps a 1-type, t ∈ P, to an n-type

that makes the matrix true, with the restriction to the first term equal to t and

the restriction to the ith term equal to some other element of P. This definition

is the same as definition 11, but defined over (R,S)-predicates instead of merely

R-predicates. Now we will give the formal definition.

Definition 14. Let t ∈ P. Since P has property (♣), let t′ be the (R,S)-n-type given
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by condition (♣), and define η(t) = t′, with the following properties:

(i) η(t) |= ϕ

(ii) [η(t)|x1] = t

(iii) [η(t)|xi] ∈ P, for i ∈ {2, . . . , n}

Now define Q = {η(t)|t ∈ P} and the set

I = {0, 1, 2} ×Q× {2, . . . , n}

Since Q is the set of (R,S)-n-type extensions, the cardinality of Q, q, is finite and

depends only on Φ. Let l = 3q(n − 1). Thus, |I| = l. Given M with universe equal

to {1, . . . ,m}, let h : {0, . . . , l − 1} −→ I be a one-to-one and onto function. Then,

for each j ∈ {1, . . . ,m}, let [j] be the least non-negative remainder of j mod l.

We now define the following indices:

index1(j) = π1 (h([j]))

index2(j) = π2 (h([j]))

index3(j) = π3 (h([j]))

Thus, for any triple 〈δ, s, i〉 ∈ I, there will be roughly m
l

elements a ∈ M with

index1(a) = δ, index2(a) = s, and index3(a) = i. We can now give condition (F)

and prove that it holds in almost all finite R-models.

Condition (F): For any b ∈ M, for any (R,S)-n-type s ∈ Q, we can find c2, . . . , cn,

elements of M, with the following properties, for 2 ≤ i ≤ n:

(i) index1(c2) ≡ . . . ≡ index1(cn) ≡ index1(b) + 1 (mod 3)
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(ii) index2(c2) = . . . = index2(cn) = s

(iii) index3(ci) = i

(iv) [s|R] = tpR
M(b, c2, . . . , cn)

Lemma 1. Condition (F) holds for almost every finite structure. That is, for finite

structures of size m, µ
(
(F)

)
= 1.

Proof. For any b ∈ M and for any s, we need to find the probability that condition

(F) holds and prove that this quantity tends toward 1 as the size of M increases.

For a given 〈b, c2, . . . , cn〉, the probability that the n-tuple satisfies requirement (iv)

of condition (F) is greater than or equal to 1
q
, where q = |Q|.

This means that the probability that a given 〈b, c2, . . . , cn〉 fails is
(
1− 1

q

)
. For

a given b ∈ M and s ∈ Q, we want to find the number of disjoint possibilities for

sets of c2, . . . , cn that satisfy conditions (i)-(iii). This way, the set fails to satisfy

condition (F) only if it fails to satisfy condition (iv). Given two disjoint sets, their

respective failures of condition (F) by way of failing condition (iv) are independent

events. Multiplying their probabilities together will give us an upper bound on the

probability that all such c2, . . . , cn fail to satisfy condition (F). Thus, we want a

lower bound on the number of possible choices for disjoint c2, . . . , cn.

Claim. For a given b ∈ M and s ∈ Q, the number of possible choices for disjoint

c2, . . . , cn is at least m
l
, with m = |M| and l = |I|.

Proof. Let j ≤ bm
l
c, that is the integer part of m

l
. We will show that there is at least

one suitable (n− 1)-tuple 〈c2, . . . , cn〉 in {j(l + 1), . . . , j(l)}.

Let δ ≡ index1(b) + 1 (mod 3), and for 2 ≤ i ≤ n, let pi = h−1(〈δ, s, i〉). Now we

define ci = jl + pi. These c2, . . . , cn are suitable potential witnesses.
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Given this lower bound on the number of choices, we have the following upper bound,

for a given b ∈ M and s ∈ Q:

Prob[all c2, . . . , cn fail to satisfy condtion (F)] ≤
(

1− 1

q

)m
l

Since the number of possible choices for b is m = |M|, and the number of possible

choices for s is q = |Q|,

Prob[condition (F) fails for the model M] ≤ m

(
1− 1

q

)m
l

Since q and l are fixed based on the formula, which is independent of m, the quantity

m
(
1− 1

q

)m
l

will tend to zero as m tends to infinity. Therefore, condition (F) is

almost always true on finite models.

Given an R-structure that has condition (F), M ∈ C, we will show how to extend

M to an (R,S)-structure M∗ that is a model for ∀x1∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S).

Such an extension will prove that M |= Φ. Then, since condition (F) is almost surely

true for finite models, µ(Φ) = 1. We will extend M to M∗ by way of two rules, similar

to the rules we established for the finite controllability proof of the Ackermann class,

which will give interpretations S through the assignment of types. For some element

c ∈ M, we first define a rule for extending the R-1-types to (R,S)-1-types such that

the extensions are in P.

Rule 1: Let c ∈ M and let t0 = [index2(c)|xindex3(c)]. If [t0|R] = tpR
M(c), then let

tp
(R,S)
M∗ (c) = t0.

If [t0|R] 6= tpR
M(c), then pick an arbitrary t ∈ P such that [t|R] = tpR

M(c). Then set

tp
(R,S)
M∗ (c) = t.
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In establishing this rule, we are concerned only with the c’s such that [t0(c)|R] =

tpR
M(a). In defining the (R,S)-types for other c’s randomly, we are merely making

sure that nothing goes “wrong” with their extensions to the (R,S)-structure; that is,

we ensure that the types are always in P.

Now, we establish a second rule for setting the n-types in M∗, given n elements

of M that stand in certain relations to each other.

Rule 2: For any b, c2, . . . , cn ∈ M with the following properties:

(I) index1(c2) ≡ . . . ≡ index1(cn) ≡ index1(b) + 1 (mod 3)

(II) there exists a t ∈ P such that

(a) tp
(R,S)
M∗ (b) = [η(t)|x1]

(b) tp
(R,S)
M∗ (ci) = [η(t)|xi]

(c) index2(ci) = η(t)

(III) index3(ci) = i

(IV) tpR
M∗(b, c2, . . . , cn) = [η(t)|R],

Set tpR,S
M∗ (b, c2, . . . , cn) = η(t). Let any other extension be arbitrary.

The spectre of ambiguous assignment might again worry us, but the same argu-

ment we made earlier in the finite controllability proof is applicable to the current

case. We have constructed M∗ as an extension of M by Rules 1 and 2.

Claim 1. For an extension M∗ of M by way of Rules 1 and 2,

M∗ |= ∀x1∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S)
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Proof. Let b ∈ M∗ and t0 = tp
(R,S)
M∗ (b). Note that t0 ∈ P. Now instantiate in such a

way as to apply condition (F) according to the following method:

Let i ≡ index1(b) + 1 (mod 3)

Let t = [η(t0)|R]

Let s = η(t0)

By condition (F), we have c2, . . . , cn ∈ M with the following properties:

(i) index1(c1) ≡ . . . ≡ index1(cn) ≡ 1 + index1(b) (mod 3)

(ii) index2(c2) = . . . = index2(cn) = s = η(t0)

(iii) index3(ci) = i

(iv) t = [η(t0)| R] = tpR
M(b, c2, . . . , cn).

Notice that tpR
M(b, c2, . . . , cn) = [η(t0)|R]. This means that

tpR
M(cindex3(ci)) = tpR

M(ci)

= [η(t0)|R|xindex3(ci)]

= [η(t0)|xindex3(ci)|R]

= [index2(ci)|xindex3(ci)|R]

So, since tpR
M(cindex3(ci)) = [index2(cindex3(ci))|R], Rule 1 is invoked, and tp

(R,S)
M∗ (ci) =

[index2(ci)|xindex3(ci)]. That means that the conditions of Rule 2 hold, with t0 as the

witness. That is,

(I) index1(ci) ≡ index1(b) + 1 (mod 3)

(II) t0 ∈ P such that

(a) tpR,S
M∗ (b) = [η(t0)|x1]
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(b) tpR,S
M∗ (ci) = [η(t0)|xi]

(c) π2(ci) = η(t0)

(III) index3(ci) = i

(IV) tpR
M∗(b, c2, . . . , cn) = [η(t0)|R],

So,

tp
(R,S)
M∗ (b, c2, . . . , cn) = η(t0)

= η
(
tp

(R,S)
M∗ (b)

)

Thus, for any b ∈ M, there are c2, . . . , cn such that M∗ |= ϕ(b, c2, . . . , cn,R,S).

Therefore,

M∗ |= ∀x1∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S)

Given R-predicates and the fact that A |= ∃S∀x1∃x2 · · · ∃xnϕ(x1, x2, . . . , xn,R,S),

we have formulated an interpretation of S such that M∗, a finite model where condi-

tion (F) holds, satisfies Φ. However, condition (F) holds for nearly all finite models,

so µ(Φ) = 1.

Note on the Full Ackermann Class: We have proven the 0-1 law holds for

the restricted class, without any initial first-order existential quantifiers. To prove

the law for the full class, we let Φ = ∃S∃z1 · · · ∃zk∀x1∃x2 · · · ∃xnϕ and assume

A |= ∃S∃z1 · · · ∃zk∀x1∃x2 · · · ∃xnϕ(z1, . . . , zk, x1, . . . , xn,R,S)

29



We have to consider 1-types and n-types in the expanded vocabulary that now con-

tains constants, call them (α1, . . . , αk). Our first step, however, remains the same, in

that we define an A∗, an extension of A, such that

A∗ |= ∃z1 · · · ∃zk∀x1∃x2 · · · ∃xnϕ(z1, . . . , zk, x1, . . . , xn,R,S).

We now fix a d1, . . . , dk ∈ A∗ such that

A∗ |= ∀x1∃x2 · · · ∃xnϕ(d1, . . . , dk, x1, . . . , xn,R,S).

Instead of the P from the restricted proof, we define a P∗ to be the set of all (R,S)-

1-types in this extended language that are realized in A∗ such that α1, . . . , αk are

interpretations of d1, . . . , dk. Our mapping η(t) takes these 1-types to (R,S)-n-types

in the extended language. As before, we let Q be the range of η and I = {0, 1, 2} ×

Q× {2, . . . , n}.

Now we define two conditions, (F1) and (F2), that will take the place of our

(F) above. They are:

(F1) There are a1, . . . , ak ∈ M such that tpR
M(a1, . . . , al) = tpR

A(d2, . . . , dk).

(F2) Let a1, . . . , ak be the earliest elements that fulfill (F1). Then, for any b ∈ M,

for any (R,S)-n-type s ∈ Q, we can find some elements of the model c2, . . . , cn

with the following properties:

(i) ci 6= aj for 1 ≤ j ≤ k.

(ii) index1(ci) ≡ index1(b) + 1 (mod 3)

(iii) index2(ci) = s

(iv) index3(ci) = i

(v) [s|R] = tpR
M(b, c2, . . . , cn), when α1, . . . , αk are interpreted as a1, . . . , ak
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where 2 ≤ i ≤ n.

We can make a probability argument for (F1) that shows that the probability is

overwhelming for models of large enough size. Then, when (F1) holds, we set

tp
(R,S)
M∗ (a1, . . . , ak) = tp

(R,S)
A∗ (d1, . . . , dk)

We would then make another probability argument, similar to the one for (F), to

show that (F2) holds for almost all finite models, and proceed along a path similar

to the proof for the restricted class. One caution should be taken, however, with

the analogs to Rules 1 and 2. We must restrict the domain of the new Rule 1 to

c 6= a1, . . . , ak. Moreover, we must restrict the domain of Rule 2 to c2, . . . , cn disjoint

from a2, . . . , ak. By so restricting their domains, we prevent them from reassigning

the a2, . . . , ak.

8 Advantages of Our Proof

In order to illustrate the advantages of our proof of a 0-1 law for the Σ1
1 Ackermann

class over the Kolaitis and Vardi approach, we will briefly give an overview of their

proof, without dwelling on unnecessary details. This survey will highlight how our

refinement is a simplification.

The Kolaitis and Vardi proof proceeds in much the same direction as ours: it looks

to prove a Transfer Theorem for the Σ1
1 Ackermann Class. So, it assumes A |= Φ,

and shows that µ(Φ) = 1. To do this, they give three lemmas, finally combining these

three smaller results together to show a Transfer Theorem.

• (Lemma 1) They define a syntactic condition essentially the same as our con-

dition (♣), and show that it holds for an Ackermann sentence Φ whenever Φ is

true on A.
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• (Lemma 2) They define a “richness” property Es, for s ≥ 1 for (some) finite

structures over R, then show that µ(Es) = 1 for any s ≥ 1.

• (Lemma 3) They show that for Φ, a Σ1
1 Ackermann sentence for which condi-

tion (♣) holds, they can pick an s ∈ N such that for sufficiently large m, the

sentence Φ is true of finite structures of cardinality m over R that have property

Es.

Since property Es is almost always true, µ(Φ) = 1, and the Transfer Theorem

holds.

The central difference and advantage of our proof is the relative simplicity of our

probability argument compared to those used to push through lemmas 2 and 3. In

our proof, for any b ∈ M, we want to ensure that there are q-many (n − 1)-tuples

〈c2, . . . , cn〉 that act as potential witnesses for b. That is, they are elements of the

model such that, potentially, M∗ |= ϕ(b, c2, . . . , cn). By ensuring enough potential

witnesses, we ensure that there will be an (n − 1)-tuple that is actually a set of

witnesses for the given b.

We guarantee a sufficiently large space of witnesses by having an n-tuple for every

s ∈ Q. However, since the size of this potential witness space is fixed independently

of the size of M, the probability argument for the existence of such a space—our

condition (F)—is quite simple.

In contrast, Kolaitis and Vardi peg their potential witnesses to the size of M.

Specifically, in their proof of Lemma 3, in order to show that M |= Φ, they use a

finite random structure argument, due to Gurevich and Shelah [14], to obtain suitable

interpretations of the S-predicates. Because of this argument, they require that there

be at least d
√
m e potential witnesses for any b. This requirement necessitates that

their condition Es be much more powerful, thereby requiring a far more complicated
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probability argument due to Chernoff [4] in order to show that Es is almost surely true

for finite models. Because we define the interpretations of the S-predicates directly

through Rules 1 and 2, we avoid such complications and the need for such powerful

probability arguments.

9 Remarks on the Σ1
1 Gödel Class and 0-1 Laws

We will here include a few concluding remarks concerning the Le Bars [1] proof that

a 0-1 law cannot hold for the Σ1
1 Gödel class (without equality), whereby he disproves

the conjecture made by Kolaitis and Vardi [16]. He proves this result by using a

notion from graph theory, the kernel, which we now define:

Definition 15 (Kernel). A set of vertices U of a directed graph H is a kernel if

there is no arc (directed edge) inside U and for each vertex that is in H but not in U ,

there is an arc that goes to U .

Let K be the following Σ1
1 Gödel sentence (∀∀∃):

∃U ((∀x∀y((Ux ∧ Uy) → Rxy)) ∧ (∀x∃y(¬Ux→ Uy ∧Rxy)))

Note that K holds if and only if the structure, when considered as a directed graph,

has a kernel. K is true on the infinite random graph. There is, in fact, an infinite

kernel. To see this, we need only remember that a fundamental notion of the infinite

random graph is the fact that, in the graph, anything that can happen, does. Suppose

for a contradiction, that there is a finite kernel of size k. For any given element not in

the kernel, the probability that it has no arc into the kernel is
(

1
2

)k
. The probability

that it has such an arc, then, is 1 −
(

1
2

)k
. For a structure of size m, the probability

that all elements not in the kernel have an arc into the kernel is
(
1−

(
1
2

)k
)m−k

. Since

k is fixed, as m increases, this quantity will tend toward zero. Thus, with probability
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1, we have omitted some element from the kernel that should be included. Thus, the

kernel must be infinite.

In finite graphs, however, it is unlikely to have a kernel that is large relative to the

size of the graph, since the probability of having k elements without an arc between

them is
(

1
4

)k(k−1)
. Moreover, it is also improbable to have a kernel that is too small,

relative to the size of the graph, since the probability that every element outside of

the kernel has an arc into a small set is itself small. It is the case that µ(K) = 1, but

more specifically, there is asymptotic probability of 1 that there exists a kernel of a

certain size relative to the size of the graph. That is, the kernel is neither too big

nor too small. Le Bars makes use of this delicacy in creating a variant of K, K′, with

more predicate letters, such that µ(K′) does not exist. Thus, the Gödel class without

equality fails to obey a 0-1 law.

To involve ourselves any further in Le Bars’ proof would necessitate considerable

immersion in graph theory, from which he pulls many results and theorems. However,

his conclusion interests us insofar as it returns speaks to the connection that was

hoped for at the beginning of this paper: the correlation between decidability of a

class of first-order sentences and a 0-1 law holding for the associated Σ1
1 fragment.

The proofs that show the failure of the 0-1 laws for the Σ1
1 fragments that correspond

to the other minimal undecidable classes—∀∀∀∃, ∀∃∀, and ∀∀∃ with equality—each

gave a formula F such that µ(F ) existed, but was not equal to 0 or 1. Le Bars’ proof

for the Gödel class only gives an F such that µ(F ) does not exist. He admits that he

was unable to find an F such that µ(F ) exists and is not equal to 0 or 1. Hence, he

conjectures that there may be a rather subtler connection between decidability and

0-1 laws. If we let (Σ1
1(L))

AP
denote the set of all sentences in Σ1

1(L) for which the

asymptotic probability is defined, then for some fragment L of first-order logic,

L is decidable if and only if a 0-1 law holds for
(
Σ1

1(L)
)AP
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If this conjecture is true, it means that decidability is somehow sensitive to a 0-1 law

for those sentences in the logic for which the asymptotic probability exists. Moreover,

the conjecture points a specific class of sentences that is sensitive to whether or

not a logic is decidable. Why does a model-theoretic property—the existence of

an asymptotic probability—function as a way to determine if a logic is decidable?

What is it about this class of sentences that makes this connection? Provided the

conjecture is true, the answers to these questions might give us better insight into

what decidability is.
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