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Abstract: The early 20th century witnessed concerted research in foundationalism
in mathematics. Those pursuing a basis for mathematics included Hilbert, Russell,
Zermelo, Frege, and Dedekind. They found a vocal opponent in Poincaré, whose
attacks were numerous, vituperative, and often indiscriminant. One of the objections
was the petitio argument that claimed a circularity in foundationalist arguments. Any
derivation of mathematical axioms from a supposedly simpler system would employ
induction, one of the very axioms purportedly derived.

Historically, these attacks became somewhat moot as both Frege and Hilbert had
their programs devastated—Frege’s by Russell’s paradox and Hilbert’s by Gödel’s
incompleteness result. However, the publication of Frege’s Conception of Num-
bers as Objects [63] by Crispin Wright began the neo-logicist program of reviving
Frege’s project while avoiding Russell’s paradox. The neo-logicist holds that Frege’s
theorem—the derivation of mathematical axioms from Hume’s Principle(HP) and
second-order logic—combined with the transparency of logic and the analyticity of
HP guarantees knowledge of numbers. Moreover, the neo-logicist conception of lan-
guage and reality as inextricably intertwined guarantees the objective existence of
numbers. In this context, whether or not a revived version of the petitio objection
can be made against the revived logicist project.

The current project investigates Poincaré’s philosophy of arithmetic—his psychol-
ogism, conception of intuition, and understanding of induction, and then evaluates
the effectiveness of his petitio objection against three foundationalist groups: Hilbert’s
early and late programs, the logicists, and the neo-logicists.
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Chapter 1

Introduction

The early 20th century witnessed a huge rise in interest in foundationalism in mathe-

matics. Those pursuing a solid foundation for mathematics included Hilbert, Russell,

Zermelo, Frege, and Dedekind. They found a vocal opponent in Poincaré, whose at-

tacks were numerous, vituperative, and often indiscriminant. One of the objections

was the petitio argument that claimed a circularity in the foundationalist argument.

Any derivation of mathematical axioms from a supposedly simpler system would em-

ploy induction, one of the very axioms purportedly derived.

Historically, these attacks became somewhat moot as both Frege and Hilbert had

their programs devestated—Frege’s by Russell’s paradox and Hilbert’s by Gödel’s

incompleteness result. However, the publication of Frege’s Conception of Num-

bers as Objects [63] by Crispin Wright began the neo-logicist program of reviving

Frege’s project while avoiding Russell’s paradox. The neo-logicist holds that Frege’s

theorem—the derivation of mathematical axioms from Hume’s Principle(HP) and

second-order logic—combined with the transparency of logic and the analyticity of

HP guarantees knowledge of numbers. Moreover, the neo-logicist conception of lan-

guage and reality as inextricably intertwined guarantees the objective existence of

numbers. In this context, whether or not a revived version of the petitio objection

4



can be made against the revived logicist project.

The current piece has an ultimate goal of demonstrating that a revived Poincaréan

objection can be posed to the neo-logicist and that the neo-logicist does not currently

offer a solution. Along the way, I hope to achieve a number of historical and inter-

pretive goals.

Chapter 2 has two separate interpretive goals. The first is to explicate Poincaré’s

usage of ‘intuition’ and demonstrate both its origins in Poincaré’s thoroughly psy-

chologistic background and its effect on his conception of induction. Poincaré’s in-

tuition will be separated into three distinct threads—mathematical ability, temporal

awareness, and psychological necessity. Secondly, the chapter aims to differentiate

Poincaré’s views on the philosophy of mathematics from those of Kant, whose posi-

tions Poincaré largely adopts as his own. The chapter focuses on Poincaré’s philosophy

of arithmetic independently of his philosophy of geometry or science.

Chapter 3 divides Hilbert’s work into the early and late periods. For the for-

mer, I will demonstrate exactly how Poincaré’s petitio objection is effective; I will

give Hilbert’s proof of the consistency of the Peano axioms and highlight where this

proof relies on induction. The second half of the chapter looks to impose an in-

tepretive structure on Hilbert’s papers of the 1920s. This structure will identify

four contrasts fundamental to Hilbert’s program and help evaluate a reformulated

Poincaréan objection. The chapter also whether either of two other reconstructions,

Michael Detlefesen’s or Marcus Giaquinto’s, fare any better (they do not).

Chapter 4 recapitulates the argument given by Warren Goldfarb [23] that Poincaré’s

objection was not effective against the original logicists because of their unique con-

ception of logic. The goal of this recapitulation is twofold. First, it demonstrates why

a similar defense for the neo-logicists is not possible. Second, it shows how the petitio

could fail, in contrast to its success against Hilbert’s program.

Finally, Chapter 5 spells out the neo-logicist program in detail and lodges two
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revised Poincaréan objections. The chapter also compares these objections to pre-

existing ones so as to throw those into a Poincaréan light. Ultimately, it does not

argue that these objections are knock down arguments, but rather that they require

an explanation from the neo-logicist that does not currently exist.
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Chapter 2

Poincaré

The current chapter has two distinct and sometimes competing goals. The first is

historical; it seeks to give an accurate account of Poincaré’s views on the mathematical

notions of intuition and induction. Moreover, it looks to contrast these views with

Kant’s philosophy of arithmetic, which Poincaré is often labeled as following. One of

the main problems with an attempt to accurately represent Poincaré’s position is that

his writings on arithmetic are scant and not always self-coherent. The second goal

is therefore to impose an interpretive structure on Poincaré’s writing so as to make

his position a coherent whole. Both goals can be achieved by proposing a structure

strongly supported by textual evidence.

To this end, the chapter will first identify four distinct aspects of Poincaré’s

psychologism. Second, it will identify three notions of mathematical intuition in

Poincaré’s work and trace their roots back to elements of his psychologism. Third, it

will argue that these three underlying conceptions directly inform Poincaré’s views on

mathematical induction, which lies not only at the heart of mathematical science for

Poincaré, but also as the basis for scientific progress. This conclusion will demonstrate

that Poincaré’s petitio objection stems immediately from his conception of induction.

Finally, it will briefly present Kantian notions of intuition and syntheticity in order
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to argue that they differ significantly from Poincaré’s conception of those concepts,

thereby demonstrating in what way Poincaré’s philosophy of arithmetic differs from

Kant’s.

Secondary literature directly pertaining Poincaré’s philosophy of arithmetic is

sparse, with most commentators focusing on Poincaré’s broader philosophy of science

(see Zahar [66] or Ben-Menahem [1] recent takes) or else his philosophy of geometry

(Torretti [62]). Dedicated manuscripts primarily about his philosophy of arithmetic

appear from Folina [17], de Lorenzo [10], and Mooij [39], with only the first in En-

glish. Much of the scarcity can probably be attributed to the limited quantity of

Poincaré’s writings directly on the subject. Instead, much of his philosophy of arith-

metic, intuition, and induction must be gleaned from his objections to Hilbert and the

Logicists. Some of the blame may be due to the fact that while Poincaré’s views on

geometry differed significantly from Kant, his views on arithmetic are seen to ape his

predecessor. While true generally, I will discuss two aspects of Poincaré’s philosophy

of arithmetic that significantly differ from Kant—intuition and syntheticity.

One goal not taken up by this chapter is an for the correctness of Poincaré’s views.

There is an inherent plausibility in the formulation of these principles, and this chapter

will attempt to present them in just such a favorable light. However, I will not provide

detailed arguments for why Poincaré is ultimately correct in his views. Ultimately,

the dialectical role of this chapter is to clarify Poincaré’s philosophy of arithmetic,

to expose differences between Poincaré and Kant, and to lay bare the assumptions

brought to bear in Poincaréan objections to the logicists and neo-logicists. 1

1Page citations of Poincaré are from [45], [46], and [44] where appropriate. Where possible, I
have given the paper citations from the original paper as republished in Ewald [14].
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2.1 Poincaré’s Psychologism

The lens through which one must view Poincaré is thoroughly psychologistic; his

psychologism is not limited to his belief that logic is psychological because the laws of

logic are the laws of thought, nor is it limited to his belief that logics is psychological

because it is ultimately justified on psychological grounds. Rather, psychology plays a

fundamental role in all aspects of Poincaré’s philosophy. This role can be categorized

by four principles.

1. Regardless of field, psychological principles are the ultimate bedrock upon which

justifications rest.

2. Arguments from psychological grounds are permissible and convincing.

The relationship between human psychology and the sciences is bilateral:

1. Advances in science can lead to greater understanding of the human psyche.

2. Our psychological experience of these subjects must accord with new theories

and can weigh in favor of a particular theory over another.

2.1.1 Science Advancing Psychology

[Mathematical science] reflecting upon itself is reflecting upon the human
mind which has created it; the more so because, of all its creations, math-
ematics is the one for which it has borrowed the least from the outside
[45, p. 36]

By examining the products of the human mind—by reflecting upon the struc-

ture the mind places on the world—one can come to know more about the structures

of human psychology, Poincaré argues. These structures cannot help but reflect the

structure of the mind that created them (Compare to the neo-logicist view of language
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(§5.1.2). These structures are simply the scientific theories created to explain phe-

nomena. Among these, mathematics holds a privileged place because it is informed

the least by empirical data—it springs forth from the mind most “purely”. Therefore,

it bears most strongly the psychological structures of the human mind, and its study

is best suited to reveal deep-seated psychological rules. Not only is mathematics most

likely to be fruitful on examination, but also most likely to reveal the fundamental

principles of human psychology.
Poincaré writes,

The genesis of the mathematical discovery is a problem which must inspire
the psychologist with the keenest interest. For this is the process in which
the human mind seems to borrow least from the exterior world, in which
it acts, or appears to act, only by itself and on itself, so that by studying
the process of geometric thought we may hope to arrive at what is most
essential in the human mind [45, p.46].

2.1.2 Psychology Advancing Science

This method [of the logicists] is evidently contrary to all healthy psychol-
ogy. It is certainly not in this manner that the human mind proceeded to
construct mathematics” [45, pp.144-5].

Poincaré here objects to the logicist project by arguing that the construction of

number from logical principles is not in accordance with the psychological history

of the construction of mathematics. Given Poincaré’s view that mathematics and

arithmetic are structures of the human mind, any theory that correctly explains their

foundations must be analogous to the personal psychological experience of learning

mathematics(that personal experience is itself analogous to the original psycholog-

ical construction of mathematics). Thus, reflection on psychological experiences at

learning mathematics can and should, according to Poincaré, act as a guide to math-

ematical theory.
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Poincaré goes further and argues that not only can rational cognizing on psycho-

logical experiences bring about scientific advances, but that psychological experiences

themselves play an integral role in scientific examination, and thus in the science’s

epistemic justification. This position is put forth in an extended discussion of the

process by which he discovered a particular theorem about Fuschian groups (Cf. [45,

p.54]) Poincaré argues that aesthetic sense of the mathematician recognizes the in-

herent elegance of the correct proof and thus functions as a reliable tool. That the

mathematician possesses an ability to discern correct proofs by their aesthetic value

reinforces the view that mathematics is a pure product of the human mind. The

mathematician’s appreciation can be seen as an unconscious recognition of the ac-

cordance of the mathematical proof with pre-existent psychological structures. That

psychological principles and experiences should be followed to scientific discovery is

a consequence of Poincaré’s view that science is a psychological structure.

2.1.3 Psychological Principles as Bedrock

We cannot believe that two quantities which are equal to a third are not
equal to one another, and we are thus led to suppose that A is different
from B, and B from C [45, pp.22-3].

Poincaré holds that the only ultimate justification of bedrock principles are psy-

chological in nature. Consider the Principle of Non-Contradiction. Poincaré’s justi-

fication of it above is not logical, but rather based on our psychological inability to

conceive that it is false. It is a product of psychological necessity. The unavoidable

belief in the principle is what justifies it, not a sense of logical validity. Thus, if

even the Law of Non-Contradiction has a psychological epistemic basis, than these

psychological rules are bedrock.

It should be noted that these psychologically justified bedrock propositions inform

Poincaré’s definition of the synthetic a priori :
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. . . the term employed by Kant to designate the judgments that can nei-
ther be demonstrated analytically, nor reduced to identity, nor established
experimentally [46, p.146].

Something that cannot be reduced to identity, established experimentally, nor

demonstrated analytically must be something that is self-evident upon reflection,

for these options exhaust all other potential avenues of justification. This notion of

self-evidentness, for Poincaré, is nothing more than psychological inevitability.2 For

Poincaré, psychological necessity is sufficient to constitute epistemic justification.

2.1.4 Permissibility of Psychological Arguments

How does it happen that there are people who do not understand mathe-
matics? If the science invokes only the rules of logic, those accepted by all
well-formed minds, if its evidence is founded on principles that are com-
mon to all men, and that none but a madman would attempt to deny, how
does it happen that there are so many people who are entirely impervious
to it [45, p.47]?

In arguing mathematics being solely logical, Poincaré employs a purely psycholog-

ical argument, consisting wholly of premises about human understanding and human

psychology, yet making a metaphysical conclusion. This particular argument takes

the following form:

P1 If mathematics were described wholly by the rules of logic, then everyone would

be able to understand it;

P2 Some people do not understand mathematics;

Concl. Therefore, mathematics is not described wholly by the rules of logic.

P2 is true and Concl. follows from P1 and P2. However, Poincaré needs to justify

P1, and here is where Poincaré employs psychological principles as bedrock justifica-

tion. Accordingly, his argument is outlined thus:

2Compare this notion of the synthetic priori for Kant (§2.4).

12



P1 If mathematics were described wholly by the rules of logic, then everyone would

be able to understand it.

a) The rules of logic are self-evident upon reflection.

b) The rules of logic are universally valid, across space and time.

c) If the rules of logic are universal, then they are shared by everyone.

d) The rules of logic are shared by everyone. [From b) and c)]

e) If the rules of logic are shared by everyone and they are self-evident upon

reflection, then everyone has access to them, upon reflection.

Subconcl. Everyone has access to the rules of logic, upon reflection. [from a),

d), and e)]

P2 Some people do not understand mathematics, even when it is explained to them.

Concl. Therefore, mathematics is not described wholly by the rules of logic.

Note that a) is a psychological claim. That the rules of logic are self-evident upon

reflection is a claim about what the human mind must believe; it claims that the

rules of logic are forced upon human understanding by the very nature of human

psychology. This rule of human psychology is the basis for P1, and consequently the

entire argument. Thus, Poincaré’s admission of psychological argument can be seen

as another aspect of his admission of psychological principles as bedrock.

2.2 Intuition

Poincaré bases much of his views on the foundations of mathematics on intuition.

However, he presents no clear coherent conception of intuition. There is no evolving

notion that comes clear. Nor exists a single thread from which one can draw a sin-

gle latent principle. Rather, there appear three separate, yet inextricable aspects of
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intuition in Poincaré’s usage that he himself often conflates. These three are math-

ematical ability, grasp of the succession of moments, and immediate psychological

acquaintance.

The first we have seen the foundation of in Poincaré’s psychologism. There, he

claim that part of a mathematician’s ability derived from an unconscious aesthetic

appreciation of mathematics. This appreciation is something that can be honed, but

only in the presence of a pre-existing talent. Some people have it and are able to

undertake mathematical research, while others do not. Poincaré describes it in the

following passage:

We can understand that this feeling, this intuition of mathematical order,
which enables us to guess hidden harmonies and relations, cannot belong
to every one. Some have neither this delicate feeling that is difficult to
define, nor a power of memory and attention above the common, and
so they are absolutely incapable of understanding even the first steps of
higher mathematics. This applies to the majority of people. Other have
the feeling only in a slight degree, but they are gifted with an uncommon
memory and a great capacity for attention. They learn the details one
after the other by heart, they can understand mathematics and sometimes
apply them, but they are not in a condition to create. Lastly, others
possess the special intuition I have spoken of more of less highly developed,
and they can not only understand mathematics, even though their memory
is in no way extraordinary, but they can become creators, and seek to make
discovery with more or less chance of success, according as their intuition
is more or less developed [45, p. 50].

Intuition as mathematical ability allows one to foresee the direction of proofs

and perceive the correct path. As such, it demonstrates that Poincaré adheres to a

Kantian position of mathematics as synthetic. A mathematical proof is not a series

of deductive steps resulting in a theorem. Instead, every step in the proof requires an

intuitive leap made possible by the mathematician’s ability.

The second aspect of Poincaré’s intuition is an immediate, instinctual grasp of

temporal progression. More precisely, an understanding of mathematical notions can

only be achieved against the backdrop of a succession of instants of time. Mathe-
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matical reasoning is done in a temporal context. This progression of time is not a

continuum, but instead instants following after instants, cascading one after another

constantly. It is an instinctual grasp of moments in time being well-ordered, but

discontinuous.

The succession of instants to which we have immediate, instinctual access is

analogous to the rationals embedded in the real line. Rational numbers exist prior to

the irrationals, and hence real numbers. The fact that one learns about the rational

numbers before the reals guarantees this fact for Poincaré (Cf. §2.1.2). In fact, the

definition of real numbers—and hence human understanding for Poincaré—is built

out of and in reference to the rationals. The two main definitions that in mind

here are Cauchy sequences and Dedekind cuts. They are both comprised of sets of

rational numbers and postulate the existence of a new number from these sets. That

these definitions make reference to rationals reflects for Poincaré the structure of

our psychology. Our understanding of the rationals is prior to our understanding of

irrationals.

Similarly, our grasp of the succession of instants is psychologically (and therefore

epistemically) prior to our grasp of a notion of a continuity of time—our pre-theoretic

notion of “moment succession” is the foundation out of which our theoretical notion

of the continuity of time springs. There are many additional parallels to be drawn

between the two relationships.

First, just as there are infinitely many rationals, there are infinitely many in-

stants in time. Moreover, just there are for any given moment in time, infinitely

many moments of time clustered around that moment, so too the case with the ra-

tionals. Moreover, between any two rationals, there can be found another rational.

Similarly, between any two moments of time, there can be found an additional mo-

ment. Finally, like the rationals, Poincaré’s notion of moments of time is that they

are totally disconnected. That is, there are no non-trivial connected subsets. Each
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moment in time, like each rational, is disconnected in some way from every other

moment in time.

The third and final aspect of Poincaré’s use of ‘intuition’ is perhaps the closest to

traditional uses of the word, both within and outwith philosophy. Poincaré claims that

one can know a proposition by intuition meaning that one has an immediate grasp,

unquestioning readiness to accept, or the proposition is self-evident.3 For example,

recall that Poincaré insists that the Principle of Non-Contradiction can rely upon

no further epistemic justification (§2.1.3). Our intuitive grasp (read:psychological

certainty) of particular principles outstrips any potential objections to them. This

strand of intuition is simply a repackaging of Poincaré’s prior commitment to the ac-

ceptability of psychological facts about human nature(e.g. an inability to disbelieve

a proposition) as epistemic justification for the truth of a proposition. To say that

something is known intuitively on this usage is simply to claim that the psycholog-

ically inevitability of that assertion guarantees its truth. Thus, the “intuition” that

underlies “intuitive” propositions is nothing more than psychological force.

These three notions do not interact in clearly delineated ways within Poincaré’s

texts. None is more fundamental than the other two. Instead they are mutually basic

and alternatively reinforcing. There are instances of Poincaré using the notion of tem-

poral continuity to explain the self-evidentness of a proposition; of Poincaré showing

that strong mathematical abilities rely on strong temporal intuitions; and of Poincaré

under-girding our understanding of the continuity of time via self-evidentness. Draw-

ing out these three separate threads is not aimed at performing a reduction on

Poincaré’s arguments. Rather, it is aimed at explicating Poincaré’s unique notions of

intuition and identifying how these three conceptions coalesce in Poincaré’s concep-

3Self-evidentness in particular among these construals is controversial insofar as one might be
able to give an account of self-evidentness that is logical, rather than psychological in nature. For
Poincaré, however, it would be undoubted that to say that something is self evident would be to
make a psychological claim.
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tion and justification of mathematical induction. A secondary goal of so explaining

Poincaré’s notions is to witness their character as distinct from Kantian notions of

arithmetic, to be taken up in §{Kant.

2.2.1 Mathematical Ability

We begin with Poincaré’s regard of intuition as mathematical ability. He starts Sci-

ence and Hypothesis by claiming, “The very possibility of mathematical science seems

an insoluble contradiction”[43, p. 1]. This contradiction springs forth from the belief

that although mathematics might seem purely deductive, a purely deductive mathe-

matical proof would generate no new truths. It would, in essence, simply be a retelling

of known facts in a slightly different way, something akin to showing that ‘All bach-

elors are unmarried’ “proves” that ‘If you are a bachelor, then you are unmarried.

Poincaré’s notion of deduction here is restrictive. He holds that deductive reasoning

is complete obedience to a set of rules. Deduction can only be done in a formalized

system, and because of these rules, deductive systems have all their theorems pre-

determined. New truths, are then those things that are not predetermined by the

rules. Poincaré seems to have as a model of deduction a complete, sound system like

first-order logic. Deductions within the system don’t serve to introduce new truths

because the truth of those theorems was pre-ordained by the formation rules of the

formal system.

Were mathematics to be purely deductive, Poincaré argues, all mathematical

progress would be reducible to mere tautology. Moreover, were mathematics to be

complete–were mathematics to be merely the result of applications of deductive rules

of logic—there could be a mind capable, with one glance, to immediately appre-

hend all of mathematics.4 That such a mind is unimaginable is proof enough for

4Recall that the completeness of first-order logic had not been proven by this point. Poincaré’s
position can be construed as a poorly formed argument that mathematics is not part of first-order
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Poincaré that there must be something beyond mere deductive prowess in mathemat-

ical proofs.5 This something extra makes real mathematical progress possible, accord-

ing to Poincaré. He makes the connection between creative ability and mathematical

reasoning: “. . . it must be granted that mathematical reasoning has of itself a kind of

creative virtue, and is therefore to be distinguished from the syllogism. . . [modes of

reasoning that] retain the analytical character, ipso facto, lose their power”[43, p. 3].

The power being lost is the power to generate new knowledge and progress beyond

the known truths. I will return to explore this seeming contradiction in depth later in

§2.3 and argue that the something extra is inductive reasoning. For now, I leave this

notion to the side to examine thoroughly Poincaré’s detailed investigation of intuition

as mathematical ability.

Poincaré’s discussion of intuition as mathematical ability takes place under the

guise of an examination of mathematical education and the psychology behind some-

one coming to learn mathematics. That Poincaré develops this notion via an ex-

ploration of pedagogical principles is emblematic of psychological bases playing a

foundational role in his metaphysical arguments (§2.1.4).

However, we must attempt to clarify the type of mathematical ability Poincaré

has in mind. He argues that “The principle aim of mathematical education is to

develop certain faculties of the mind, and among these intuition is not the least

precious”[45, p. 128]. This intuition, which is the aim of mathematical education,

stands in contrast to logic:

Logic teaches us that on such and such a road we are sure of not meeting
an obstacle; it does not tell us which is the road that leads to the desired
end. For this it is necessary to see the end from afar, and the faculty
which teaches us to see is intuition. Without it, the geometrician would

logic, and whatever system mathematics is a part of, it is not complete. Of course, Poincaré does
not seem to recognize the difference between first-order and second-order logic in his rants against
the neo-logicist, so this interpretation may be too charitable.

5Note also that this argument is fundamentally psychologistic: the fact that a thing is inconceiv-
able to us is taken as a premise in the argument.
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be like a writer well up in grammar but destitute of ideas [45, p.130].

Logic appears to Poincaré to be without content—it is merely a set of rules

that functions regardless of the subject of its inquiry. It is purely mechanical and

non-creative. However, mathematics has substantial content and is fundamentally

creative. Someone who is quite capable in logic might very well determine that a

proof is correct, but for Poincaré, this logician would fail to recognize what the proof

is actually about. This recognition of the substance of mathematics via the creative

spark is the intuition of which Poincaré speaks.

An important feature of this description is a comprehension of unity. It is vital

that mathematical ability is somehow able to perceive or apprehend the totality of a

mathematical argument, rather than simply verifying each individual step. This veri-

fication process is precisely how Poincaré characterizes logic and deductive reasoning,

which checks that one can reason safely from the premises

p

p ⊃ q

to the conclusion

q

Mathematical ability is marked by a comprehension of the whole proof and the collec-

tion of those individual thoughts and steps into a coherent whole. Those truly gifted

with this ability (intuition) will be able to foresee a proof’s steps and the general

direction without actually verifying each and every one of the deductive steps. They

will be able to sketch a proof and know it is correct without verification of the formal

steps. This ability echoes Poincaré’s notion of the principle of induction—moving
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from particular inferences to a globally true inference (See §2.3.1).

Intuitive mathematical ability as unifying particulars into a general principle

appears again in the same chapter:

It is the same in mathematics. When the logician has resolved each
demonstration into a host of elementary operations, all of them correct,
he will not yet be in possession of the whole reality; that indefinable some-
thing that constitutes the unity of the demonstration will still escape him
completely.

What good is it to admire the mason’s work in the edifices erected by
great architects, if we cannot understand the general plan of the master?
Now pure logic cannot give us this view of the whole; it is to intuition we
must look for it[45, p. 126].

Again, Poincaré draws significant contrast between the specifics of logic and the

wider, grander vision of intuition. Poincaré attributes an aesthetic quality to mathe-

matical ability—a psychological experience helping to improve mathematical discov-

ery as in §2.1.2. Someone who possesses such intuition is likened to one with an

appreciation of the general plan of a master architect.

Poincaré later develops a description of how this aesthetic intuition combines

subconscious thoughts having been activated by conscious work into solutions hitherto

unknown. The subconscious performs a mental re-arrangement on these agitated

ideas to re-combine them into (true) conclusions unattainable via purely conscious

thought. Poincaré then guarantees the accuracy of this subconscious work by a second

appeal to aesthetic appreciation:

More commonly the privileged unconscious phenomena, those that are
capable of becoming conscious, are those which directly or indirectly, most
deeply affect our sensibility.

It may appear surprising that sensibility should be introduced in connex-
ion with mathematical demonstrations, which, it would seem, can only
interest the intellect. But not if we bear in mind the feeling of mathe-
matical beauty, of the harmony of numbers and forms and of geometric
elegance. It is a real aesthetic feeling that all true mathematicians recog-
nize, and this is true sensibility.[45, pp.58-9, my emphasis]
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Poincaré’s notion of intuition as mathematical ability extends beyond intellec-

tual skill and encompasses an emotion or sensibility. Recognition of the harmony

and simplicity of correct mathematical arguments enables mathematical creativity.

Aesthetic appreciation of mathematical beauty is that which distinguishes the math-

ematician from the logician, according to Poincaré. Because that intuition is not

deductive, mathematics is not purely deductive and the paradox that Poincaré sets

before himself at the beginning of the chapter is resolved.

Two features of Poincaré’s discussion of mathematical ability are particularly

important.

First, his argumentation is purely psychological, involving examples from his own

personal experience as well as from the general experience of mathematics instruction.

Psychological principles provide the foundation for arguments in favor of metaphys-

ical conclusions. That aesthetic appreciation plays an important role in the basic

functioning of this ability reinforces Poincaré’s psychological basis.

Second, intuitive mathematical ability, is the recognition of unifying general prin-

ciples and a perception of their truth from observation of individual cases via an aes-

thetic appreciation for the beauty and harmony of mathematics. Logic serves only

to verify the accuracy mathematician’s creative proof. It checks each individual step

from the starting assumptions to the end conclusion. Mathematical genius is the

comprehension of the general structure of mathematics beyond the individual moves

permitted by the rules of logic; it takes specific permitted deductive steps and mar-

shals them into a proof of the general structure of mathematics. This particular facet

of intuition is manifested clearly in Poincaré’s view on mathematical induction. It

becomes the ability of the mathematician to move from the particular syllogisms of
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P (1)

P (1) ⊃ P (2)

P (2)

P (2) ⊃ P (3)

P (3)

...

to the general statement of

P (n)

for all n. We will return Poincaré’s conception of induction in detail later in §2.3,

once the two additional notions of intuition have been discussed.

2.2.2 Temporal Progression

Poincaré’s conception of intuition as mathematical ability is relatively explicit in his

text; his notion of intuition as an immediate grasp of time as a succession of instants

is more subtle. I argue that Poincaré viewed an understanding of a sufficiently dense

ordering of the passage of moments of time as a necessary presupposition to any

mathematical reasoning. Mathematics for Poincaré is not atemporal manipulations

of eternally unchanging quantities. Rather, it is dynamic and persists through the

passage of time. Any mathematical reasoning is done against the backdrop of the

succession of moments. Immediate access to intuitions of temporal succession under-

lies Poincaré’s philosophy of mathematics. Poincaré’s writing on two mathematical
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concepts—geometrical space and infinity—will serve to illuminate his conception of

this aspect of intuition.

Time and Geometric Space

Poincaré discusses at length how it is that we come to conceptualize geometric space

[49] and [46, pp.51-88]. In fact, an entire part of his collection Science and Hypothesis

is dedicated to the examination of the theory of space and geometry. In order to

understand the basic theory of space as it relates to geometry, Poincaré examines the

initial way in which humans learn about geometry. In order to understand geometry’s

epistemic status (whether it is a priori or contingent) Poincaré examines how humans

learn about geometry in the first place. This psychological learning process necessarily

accords for Poincaré with the epistemic and metaphysical justification of geometry.

Psychological justification is bedrock.

For this reason, Poincaré calls the following a paradox,

Beings whose minds were made as ours, and with sense like ours, but
without any preliminary education, might receive from a suitably-chosen
external world impressions which would lead them to construct a geometry
other than that of Euclid, and to localise the phenomena of this external
world in a non-Euclidean space, or even in space of four dimensions.[46,
p.51]

This constitutes a paradox for Poincaré because geometry (being a merely math-

ematical subject) is not empirical in any way because it is not verified by experiment.

One does not go about measuring triangles in the world to verify the Pythagorean

Theorem. It is thus a product purely of our minds and of our psychology. But if it is

mathematical—and thus completely reflective of the internal psychological structures

of our mind—then a being with identical psychological structures could only generate

an identical geometry. The internal psychological structures pre-determine the math-

ematical structures created by that mind. Yet, Poincaré claims that external factors
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could result in the development of non-Euclidean geometry as the primary way in

which the world is apprehended. Beings with the same psychology cannot conceive of

a different geometry as primary (in the way that we might think Euclidean geometry

is primary) unless geometry itself is empirical or somehow contingent. Hence, the

paradox.

To resolve this problem, Poincaré claims that although the axioms of Euclidean

geometry are “mere” conventions in the sense that they are only one of many poten-

tial sets of syntactic rules for geometry, they are impressed upon us by our external

physical surroundings. An analogy can be drawn between the rules of geometry and

units of measurement. Just as there are many different sets of rules for geometry (hy-

perbolic, Euclidean, parabolic, etc.), there are many different units of measurement

that accurately describe the world. However, different situations impress the use of

different units upon us. For instance, we cannot measure distances between cities

in nanometers or microchip specifications in light-years. The impossibility is not a

logical one, for surely we could, in some sense, measure the distance between stars

in millimeters. Rather, the impossibility is a psychological and pragmatic one. We

can’t measure star distances in millimeters because our minds could not hold that

many numbers in our head and we fail to have any useful perspective.

Similarly, it is not a logical impossibility that we would generate a non-Euclidean

geometry as the standard geometry used in ordinary situations. Poincaré even goes

so far as to show a conversion from non-Euclidean to Euclidean geometry.However,

it is a psychological impossibility, given our external experiences. The psychological

requirement arises because of the external environment. Pragmatic reasons force

humans to use Euclidean Geometry while different reasons force those strange beings

to construct non-Euclidean geometry even though they share our psychology. The

paradox is resolved by the fact that geometries, Euclidean and non-Euclidean alike,

are merely different tools to help understand the external world. Different geometries
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are appropriate in different situations, based on external impressions.

A key step in this argument, however, is to show how the phenomena impressed

upon us actually bring about an impression of geometrical space. Poincaré provides

a short summary of his explanation:

None of our sensations, if isolated, could have brought us to the concept
of space; we are brought to it solely by studying the laws by which those
sensations succeed one another.[46, p.58, original emphasis]

Poincaré argues that there is no way static physical impingements on a retina

could bring about a conception of space.6 His thesis is that what enables the con-

struction of a correct account of geometric space is a succession of sensations. These

sensations need not be continuous, but they must sufficiently dense so as to construct

a conception of space. Moreover, they must be properly ordered, or else the rules of

geometric space will fail to be comprehended.

To witness the plausibility of this view, let us isolate vision as the only sense and

consider a subject who is blind from birth. Moreover, our subject lacks the intuitive

conception of time; she cannot perceive the passage of time whatsoever. Suppose we

were to suddenly give her sight. If we hold her visual field completely static, she will

be unable to form even the most basic rules of perspective or distance. For instance,

if in her visual field one man is standing near while another is hundreds of feet away,

she has no reason not to conclude that the two men are the same distance away, but

the former can hold the latter in the palm of his hand. Thus, Poincaré concludes,

there must be a succession of sensations rather than just the sensation itself to create

the conception of geometric space.

Now, however, let us move the subject around the room, but only let her open

her eyes for half a second every minute. Recall, also, that she does not have any

conception of the passage of time, so all these sensations are not ordered, nor is

6Poincaré gives an argument similar to the following in [49]
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she aware of how much time passes between opening her eyes. Again, she will be

incapable of rendering a coherent conception of space. Objects will appear to blink

in and out of existence or jump from one place to the next without occupying the

space in between. The impressions must be sufficiently dense in order for her to form

a correct conception.

Finally, suppose that we give her a sufficiently dense series of sense impressions,

but that we do not put them in any order. That is, a lifetime of sense impressions

appear randomly on her eyes. Certainly, no matter how dense this collection of sense

impressions is, the subject will be unable to form a meaningful mental conception of

geometric space. Instead, the sense impressions would merely represent a nonsense

jumble with no inherent structure.

Thus, concludes Poincaré, the construction of the mental concept of geometric

space require sense perceptions that are sufficiently dense and properly ordered. While

the sense perceptions themselves come from biological organs (eyes, ears, nose, mouth,

etc.), understanding their density and order presupposes some notion of the passage of

time. This is precisely what Poincaré has in mind for the intuitive grasp of temporal

succession. One’s understanding of time must be immediate, sufficiently dense, and

properly ordered. For Poincaré, failing to have such immediate access results in an

inability to represent geometric space, and more generally, do mathematics at all.

The presupposition of the understanding of the passage of time is, for Poincaré, an

aspect of human intuition.

Time and Infinity

The instinctual grasp of temporal progression also underlies Poincaré’s conception of

infinity. His notion of infinity as an uncompleted potential stands in stark contrast

to the Cantorians’ (so-called by Poincaré himself) view of infinities as actual, exist-

ing, completed quantities. He attacks, “There is no actual infinity The Cantorians

26



forgot this, and so fell into contradiction. . . Like the Cantorians, the logisticians have

forgotten the fact, and they have met with the same difficulties”[48, p.195, original

emphasis]. The debate arises because while speaking of all the natural numbers is

acceptable to Cantorians or to the logicists, such talk was not permitted by Poincaré.

For him, infinity was merely a way of expressing the possibility of going on forever.

Infinity was a quantity that could surpass all other quantities, rather than one that

did surpass all others. He writes,

The notion of infinity had long since been introduced into mathematics,
but this infinity was what philosophers call a becoming. Mathematical
infinity was only a quantity susceptible of growing beyond all limit; it was
a variable quantity of which it could not be said that it had passed, but
only that it would pass, all limits[45, p.143, original emphasis].

Poincaré’s conception of infinite implicitly assumes the passage of time in math-

ematics. This assumption is present in his definition of infinity as a ‘becoming’,

because it must then be changing (or at least have to possibility to change). The

original French, ‘devenir ’ has the same connotations of a process occurring through

time. However, in order to change (or have the possibility of change), a thing must

exist within a framework of time. In order for change to occur, the object in question

must exist in at least two distinct times.

In contrast to constant mathematical concepts like 0 that are eternal and un-

changing for Poincaré, infinity is not a static quantity. Infinity is a process, a merely

potential quantity. Any talk of infinity as a whole, completed quantity is inadmissible

for Poincaré. Infinity is not something that remains constant, but rather it is a dy-

namic, changing thing that is constantly in flux. We might say that it is constantly

growing. The infinity now, as you read the first word of the sentence, is smaller

than the infinity now as you read the last word. Both of these “infinities” will be

smaller than what infinity will be if you re-read this paragraph. Poincaré points to

this process of ever-increasing size in the last sentence of the quotation. If it could
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not be said that it “had passed” in the past, but only that it “would pass” in the

future, then the implication is clear that Poincaré’s notion of infinity is firmly within

a temporal framework. Not only does infinity exist in such a framework, but all of

mathematical reasoning exists within a temporal framework. To grasp mathematics,

Poincaré holds that one must possess a pre-existing understanding of the temporal

framework. The centrality of this position helps explain why mathematical induction

is so vital for Poincaré in the sciences.

2.2.3 Psychological Necessity

The third and final aspect of Poincaré’s intuition is to indicate knowing a proposition

via an immediate acceptance of it or its self-evidentness. Moreover, this access to

propositions has epistemic power for Poincaré; having an intuitive grasp of something

counts as an epistemic basis, though not absolutely so, and ultimately is the only

possible justification. This particular usage is most similar to the non-technical, pre-

theoretical, or popular usage. Phrases like ‘women’s intuition’ or ‘mother’s intuition’

echo this meaning, as do the ethicist’s questions about our ‘moral intuitions’ about

immolating babies. The mother can point to no ostensible reason that she knows that

her child is lying. We cannot say exactly how we know that burning infants alive is so

obviously morally wrong. It simply is, and there is no way to answer how we know,

yet it is beyond doubt that we do in fact know.

Poincaré’s employs this immediacy criterion of intuition in his discussion of dis-

tance and the relativity of space. In it, he argues that we have no direct access to

distance itself, but merely to relative distances. So, for example, I know that I am six

feet tall only by dint of the fact that the measuring tape that I use is itself six feet

tall. If one night, while I sleep, my height was radically changed to that of six miles,

surely I would notice this change. However, were similar changes to be made to every
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item in existence, including, but not limited to, my bed, the measuring tape, door

frames, etc., then there is no way for me to determine the change in my size. The

point here for current purposes is to recognize Poincaré’s denial of immediate access

to distance and his use of ‘intuition’ to describe such access.

We have so little the intuition of distance in itself that, in a single night, as
we have said, a distance could become a thousand times greater without
our being able to perceive it, if all other distances had undergone the same
alteration [45, p.99].

‘Intuition of’ can most easily be replaced here by the phrase ‘direct access to’.

Though this usage is not identical to the immediacy notion that characterized the

last instance, direct access and self-evidentness are intimately related.

Poincaré continues this usage when examining the epistemic status of mathemat-

ical axioms. He writes,

Every conclusion presumes premises. These premises are either self-evident
and need no demonstration, or can be established only if based on other
propositions; and, as we cannot go back in this way to infinity, every
deductive science and geometry in particular, must rest upon a certain
number of indemonstrable axioms [46, p.35].

This quotation presumes that psychological self-evidentness possesses justifica-

tory power. Moreover, Poincaré claims that all conclusions have a justification

grounded ultimately in psychological inevitability, because the justification claim

leads back to undeniable propositions. So, not only is self-evidentness a justification,

in the end it is the ultimate epistemic justification for any proposition to Poincaré.

The indemonstrability of the axioms is replicated in Poincaré’s response to Rus-

sell’s theory of types in Science and Method. This time, however, the indemonstra-

bility is attributed to intuition, rather than self-evidentness:

He [Russell] similarly introduces principles which he declares to be un-
demonstrable. But these undemonstrable principles are appeals to intu-
ition, a priori synthetic judgments [42, p.162].
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Thus, intuitive grasp of the axioms, for Poincaré, is simply a recognition of their

self-evidentness. A third notion is added in this quotation: synthetic a priori. Recall

that for Poincaré, the synthetic a priori is “the term employed by Kant to designate

the judgments that can neither be demonstrated analytically, nor reduced to identity,

nor established experimentally.”(p. 12

When looking at justification within a mathematical system, Poincaré writes,

No doubt we may refer back to axioms which are at the source of all these
reasonings. If it is felt that they cannot be reduced to the principle of
contradiction, if we decline to see in them any more than experimental
facts which have no part or lot in mathematical necessity, there is still one
resource left to us: we may class them among a priori synthetic views [43,
p.3].

The ultimate justification of these mathematical axioms cannot reside within the

system (analytically), because they form the basis of the system itself. Empirical

justification is not possible, as no experiment could demonstrate a mathematical

axiom sufficiently. The judgment that the axiom is true must be synthetic a priori,

or in other words, they must be psychologically necessary and self-evident.

However, the epistemic justification offered by intuition is limited; one cannot

claim an immediate grasp of every mathematical proposition. Poincaré writes,

[The mathematicians prior to the rigorization of the calculus in the 19th
century] trusted to intuition, but intuition cannot give us exactness, nor
even certainty, and this has been recognized more and more. It teaches
us, for instance, that every curve has a tangent—that is to say, that every
continuous function has a derivative—and that is untrue. As certainty was
required, it has been necessary to give less and less place to intuition[45,
p.123].

At first glance, it may seem that he is speaking about mathematical ability,

as in our first interpretation of ‘intuition’ (p. 17). While this notion is central to

Poincaré’s thought, the last sentence points to a slightly different meaning, because

he would most certainly disagree that “mathematical ability has less and less place”
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in proofs. Instead, what must have a less important place is the initial appearance of

things that seem obvious. The rigorization of the calculus demonstrated that what we

immediately accept as obviously correct in mathematics need not, in fact, be correct.

This quotation imposes a limitation intuition’s justificatory power. Poincaré de-

nies that all mathematical propositions are justified by intuition alone, in essence

denying Kant’s position on the matter (Cf. §2.4.2). Only the most basic principles

are supported by an intuitive grasp of their truth. Moreover, due to their funda-

mental nature, the only support these principles could have is intuition. The farther

one gets from these basic principles, the farther one proceeds from the situations in

which an immediate grasp of truth is reliable. In more complex areas of math, logic

and deductive procedures must guarantee the truth of proofs, rather than what is

immediately thought to be true.

Intuition, under this construal of Poincaré, provides the epistemic basis for the

axioms of scientific inquiry. It serves as the only justification for these base axioms,

but this justification cannot be extended to the higher, more complicated propositions

save through the proper application of logical rigor. Again, this position is funda-

mentally different from Kant’s position, wherein intuition is a mode of representation

that can only be directed towards individual objects (§2.4.2).

2.3 Induction

A clear statement of the principle of mathematical induction (PMI) must first be

given, before an examination of Poincaré’s conception. For some property of the

numbers P , if

• P holds for the base case of 0, and

• If P holds of n, then P holds of n+ 1, for any n
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then P holds for all natural numbers. We can rewrite this principle, again in

modern form, in second-order logic as

∀P (P(0) ∧ ∀n (P(n)→ P(n + 1))→ ∀n (P(n))) .

Poincaré elucidates his conception of induction by defining addition recursively

and then deriving associativity and commutativity from that definition alone. In so

doing, the reader is meant to witness the centrality of induction to mathematical

reasoning. He assumes that the operation x + 1 is already defined and goes onto

define addition of x+ a via the equation

x+ a = [x+ (a− 1)] + 1 (I)

Note that this definition is recursive and thus employs mathematical induction.

Poincaré remarks that through this process,

. . . we can define successively and “by recurrence” the operations x+2, x+
3, etc. This definition deserves a moment’s attention; it is of a particular
nature which distinguishes it even at this stage from the purely logical
definition; the equality (I), in fact, contains an infinite number of distinct
definitions, each having only one meaning when we know the meaning of
its predecessor.[43, pp.6-7]

There are three implicit notions of induction at work in the quotation. First,

induction is shorthand for an infinite number of definitions. It is merely a convenient

way of writing the following:

x+ 2 =(x+ 1) + 1

x+ 3 =(x+ 2) + 1

x+ 4 =(x+ 3) + 1

...
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Inductive definition prevents the mathematician from actually having (for epistemic

certainty and complete formality) to go on indefinitely.

Second, by being shorthand for an infinite number of definitions, inductive defi-

nition, for Poincaré, allows mathematicians to move from particular instances—x+1,

x+ 2, etc.—to a general definition. Definition by recursion is taking an infinite set of

individual definitions to be one overall general definition.

Third, this procedure is what prevents mathematics from being purely deductive.

Moving from the particular to the general gives mathematics the ability to make new

truths for Poincaré.

These three aspects secure what mathematical induction does; this topic will be

explored thoroughly in §2.3.1. The second focus of the section will be how induction

is justified. The fundamental position induction holds in Poincaré’s system indicates

that its epistemic justification can only be psychological. Both what it does and how

it is justified, I claim, are the culmination of the three aspects of intuition discussed

earlier—mathematical ability, temporal progression, and immediate grasp—which in

turn rely on Poincaré’s psychologism at base. Let us begin with an examination of

how Poincaré views induction as a progression from the particular instances to the

general rule.

Induction will provide the solution for Poincaré to the earlier seeming contra-

diction that begins Science and Hypothesis :“The very possibility of mathematical

science seems an insoluble contradiction” (p. 17) This contradiction results from two

apparent truths about mathematics.

First, mathematics appears to be purely deductive in form. Mathematicians do

not argue for a mathematical result as a philosopher does a philosophical result, nor do

mathematicians venture out into the world in search of empirical evidence to support

their mathematical results, nor are experiments conducted in laboratories to verify

geometrical truths. Rather, mathematicians start from some basic principles and
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follow certain prescribed rules in order to arrive at the intended result. Mathematical

proofs can be valid. However, implicit in Poincaré’s notion of ‘deductive’ is that it is

non-creative. Deductive reasoning can verify the accuracy of mathematical reasoning,

but that is all it is able to do. It is, perhaps, best thought of as an officious copy

editor incapable of writing on its own. Deduction is, recall, a complete obedience to

a set of rules.

Second, mathematics is capable of generating new truths, by which Poincaré

means that mathematics can have results that are new and count as knowledge in a

way that deductive consequences do not. Mathematics can create new true statements

in a non-trivial way. For instance, the proof of the Heine-Borel theorem taught us

something new about closed and bounded sets: every open cover of such a set has

a finite subcover. This fact, one of pure mathematics, was genuinely new knowledge

that was not known prior to the 19th century. In some way, it was not merely a

rearrangement of old knowledge, but genuinely new. Mathematics thus generates

new truths.

2.3.1 Induction as Moving from the Particular to the General

The paradox for Poincaré is that rote obedience to rules seems to result in a closed,

complete system. For Poincaré, nothing not inherent in the premises. How can such

a system generate new knowledge on its own?

To escape the paradox, one might be tempted to claim that logic generates its

own new truths, thereby undermining Poincaré’s second half of the contradiction,

since logic is the epitome for Poincaré of deductive systems. If logic also generates

new truths, then the paradox fails. One might argue by considering the basic rule of

Modus Ponens : p, p ⊃ q, therefore q.

If we then interpret p as ‘Plato is an ancient Greek’ and q as ‘Plato is dead’, then
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we might think that we have “learned” the new fact that ‘Plato is dead’.

However, this result comes not from the formal logic per se. Rather, it comes

from the application of logic to empirical facts; the truth of ‘Plato is an ancient

Greek’(p) and ‘If Plato is an ancient Greek, then Plato is dead’ (p ⊃ q). Thus,

the new knowledge is generated from this application, not logic qua logic. Similarly,

mathematics can be applied to the architectural plans and physical information about

a building to learn that it would withstand a wind of 100 mph. However, Poincaré

would deny that this truth is purely mathematical, but instead applied mathematical

learning to empirical facts. “Learning” that q is true independent of any semantic

interpretation of q is not really learning anything at all to Poincaré. Mathematical

theorems, on the other hand, do count genuinely as new knowledge.

Instead, Poincaré disputes the first half of the paradox. He argues that mathe-

matics is not merely deductive at all,

What is the nature of mathematical reasoning? Is it really deductive, as
is commonly supposed? Careful analysis shows us that it is nothing of
the kind; that it participates to some extent in the nature of inductive
reasoning, and for that reason it is fruitful[46, pxxiv].

Induction is central to Poincaré’s conception of mathematics. It is the creative

spark in the mathematician that permits new knowledge to be generated even though

mathematics is highly abstract, independent of empirical study, and obedient to given

rules. Deductive reasoning is subservient to it in that deductions exist in mathematics

only to verify that mistakes were not made in the creative mathematical reasoning.

Poincaré highlights the primacy of inductive reasoning in his notion of mathematics:

I asked at the outset why we cannot conceive of a mind powerful enough
to see at a glance the whole body of mathematical truth. The answer is
now easy. . . he cannot conceive of [arithmetic’s] general truths by direct
intuition alone; to prove even the smallest theorem he must use reasoning
by recurrence [induction], for that is the only instrument which enables
us to pass from the finite to the infinite [43, p.11].
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Note that for Poincaré, induction is the instrument—the only one according to

his thinking—that allows the mathematician to pass from the particular instances of

a deduction to proving it for all possible cases. To repeat, induction is the only tool,

according to Poincaré, that permits the mathematician to make universal claims. He

continues on to show that induction lies not only at the heart of mathematics, but

all of science:

In this domain of Arithmetic we may think ourselves very far from the
infinitesimal analysis, but the idea of mathematical infinity is already
playing a preponderating part, and without it there would be no science
at all, because there would be nothing general.[43, p.11]

Since arithmetic is necessary for any scientific study, the fundamental role in-

duction plays in arithmetic is similarly played by induction for all sciences. Without

the principle of induction, reasoning by recursion, there would be no science at all,

because induction is required to make universally general claims.

2.3.2 Induction and Temporal Progression

There are a number of threads to trace here from the earlier discussion of intuition.

First, the notion of continuing on indefinitely is made much clearer when viewed

through the lens of temporal succession. Recall the comparison of Poincaré’s con-

ception of the sequence of moments to the rational numbers embedded in the real

line (p. 15). The moments are distinct and isolated from each other, yet there can

always be found another moment between two given moments. It is not coincidence,

I claim, that Poincaré constructs the rational numbers via the same procedure. That

is, he constructs what he calls the first continuum by arguing that the process of in-

calation between each set of distinct numbers can be carried out indefinitely. Taking

the process of intercalating as taking a moment in time (as Poincaré understands

it), then a one-to-one correspondence can be imagined between moments in time and
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the rational numbers. Just as time plods on moment after moment, so too does the

incalation process and so too does any inductive process. Induction is the realization

that the given operation could be carried out forever. Or, alternatively, that there is

no good reason to stop at any particular point.

Recall that Poincaré’s view of infinity was not as a static quantity, but rather a

continually dynamic, ever increasing entity that would eventually surpass any quan-

tity, but that had not done so yet (p. 27). Again, the notion of infinity continually

plodding on its course to ever increasing numbers, undergirded as it is by the intuition

of temporal progression, lies behind Poincaré’s induction. When a mathematician em-

ploys the principle of induction, she merely recognizes that for some property that

the same inference from some number n to the next number n + 1 could be carried

out over and over again. That the mathematician can in principle do this stems

from the same intuitive basis for her understanding of infinity: the progression of

time. She grasps immediately that each inference can be done in succession in an

appropriate way. As such, the principle of mathematical induction simply becomes a

recognition that going on so indefinitely would result in concluding that the property

would be shown to hold for every number. Therefore, the mathematician concludes

that it does hold. The Principle of Mathematical Induction is a transcendence of this

infinite process to its final result.

2.3.3 Induction and Mathematical Ability

The second thread of intuition that must be pulled free is intuition as mathematical

ability. The first similarity is to the aesthetic recognition of mathematical unity that

Poincaré claimed underlay the ability of the mathematician to create new mathemat-

ical proofs (see p. . It is vital that Poincaré, in describing the construction of the real

numbers, speaks of “feel[ing] that [a recursive] operation may be continued without
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limit, and that, so to speak, there is no intrinsic reason for stopping.”[46, p.25] This

“feeling” echoes the sensorial language used to describe the unconscious recognition

of the correct mathematical structure (witness “real aesthetic feeling” (p. 20)[45,

p.59]. It is not that we know or comprehend the absence of an intrinsic reason to

stop; rather, we feel it. We feel the unity that persists throughout the process, that

each subsequent step is identical in kind to the one that preceded it and that there

is a harmony to how each subsequent step relates to the step before it. This sort of

explanation, of course, is warranted only by Poincaré’s psychologism: appealing to

our feelings as a legitimate indicator of mathematical truth is permitted only if one

accepts, as Poincaré does, the primacy of psychological principles.

The second aspect of similarity is the very notion of progressing from the par-

ticular to the general. Poincaré, remember, compared mathematical ability to the

appreciation of architecture. Someone who only understood the individual deductive

steps was someone who appreciated only “the mason’s work in the edifices erected by

great architects,” while those who could appreciate the whole proof—those who pos-

sessed mathematical and not just logical ability were able to “understand the general

plan of the master”[45, p.126]. So, Poincaré takes mathematical ability as that which

allows mathematicians to move from the minor details to the general plan. Similarly,

induction simply is the ability to move from the individual instances of an inference

to the general truth that underlies it. Progressing from the unending collection of

equalities that defined addition recursively to a universal definition of addition is a

progression from the particular to the general. In this sense, mathematical induction

simply is mathematical ability.
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2.3.4 Induction Justified by Psychological Necessity

The third thread of intuition—immediate psychological necessity—justifies, in the

mind of Poincaré, the principle of mathematical induction. The principle is supported

only by the fact that we feel it to be unquestionably true.

Why then is this view [reasoning by recurrence] imposed upon us with such
an irresistible weight of evidence? It is because it is only the affirmation
of the power of the mind which knows it can conceive of the indefinite
repetition of the same act, when the act is once possible. The mind has
a direct intuition of this power, and experiment can only be for it an
opportunity of using it, and thereby of becoming conscious of it.[43, p.13]

This quotation contains two key interpretive rewards. First, Poincaré equates

reasoning by recurrence with a power of the mind. This is perhaps the most explicit

rendering of induction as mathematical ability. Second, Poincaré explicitly calls upon

intuition to explain our access to this power. Induction is an element of human psy-

chology that enables the application of mathematical induction. Similarly, Poincaré

draws an explicit connection when he claims that the rule of induction, “inaccessible

to analytical proof and to experiment, is the exact type of the a priori synthetic

intuition”[43, pp.12-3]. Recall that synthetic a priori for Poincaré consists of those

things that “can neither be demonstrated analytically, nor reduced to identity, nor

established experimentally”[47, p.145]. Classifying induction as synthetic a priori

simply is, as I argued previously, appealing to the psychological necessity of it in

order to provide justification.

Induction then, should be seen as the combination of these three notions of intu-

ition. It presupposes an intuition of the progression of time, consists of a formalization

of the mathematical ability to move from particular instances of a deduction to the

general truth, and is justified solely by its synthetic a priori status.
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2.4 Kant’s Philosophy of Arithmetic

The obvious background against which to view Poincaré’s philosophy of arithmetic

is Kant’s philosophy of mathematics. This fact should come as no surprise, since

Poincaré thought himself to be defending Kant against those who, at the Kant ju-

bilee discourse, he accuses of whispering, “I well see this is the centenary of Kant’s

death”[47, p.146]. And while Poincaré develops a philosophy of geometry wholly in-

dependent of Kant, he largely agrees with Kant’s conception of arithmetic. However,

to dismiss Poincaré’s philosophy of arithmetic as purely Kantian—and thus not worth

study in its own right—is too hasty.

In particular, I want to highlight two central concepts of Poincaré’s philosophy of

arithmetic that differ significantly from Kant’s position: intuition and syntheticity. In

order to witness the difference, we must first explicate Kant’s position. However, doing

so comes at the risk of becoming overly involved in Kant’s philosophy of mathematics.

In order to avoid becoming so entangled, I will restrict the sketch of Kant’s position

to just those two topic and compare them to Poincaré’s stance. The goal of this

section is simple: to demonstrate that Poincaré, despite being sometimes labeled a

pure Kantian, in fact had a different philosophy of mathematics, one worthy of study

independent of Kant.

2.4.1 Syntheticity

Kant argues for the syntheticity of mathematical propositions in two steps, first for

arithmetic propositions and second for geometric propositions. Taking up the first,

he argues that propositions like

7 + 5 = 12
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are synthetic because they are the result of the construction of a new predicate concept

not present in the original subject, yet one that is shown to apply to the original

subject nonetheless [52, p.98]. In the case of the above equation, 12 is not a predicate

concept that is present in the original subject, which is the sum of 7 and 5. Rather,

the reasoner comes to exhibit in intuition (more on this in a moment) the concept 12

and that this concept applies to the sum of 7 and 5.

Shabel uses the helpful example of constructing a triangle from its definitive

conceptual parts. That is, if I am told that a triangle is a rectilinear, three-sided

figure, I construct the concept of the triangle out of the concepts I already have for

‘figure’, ‘rectilinear’, and ‘three-sided’ [52, p.99]. The concept of a triangle is not

present in the definition of those terms, and the fact that I have constructed the new

concept means that it is synthetic.

Returning to the arithmetic example, the left hand side of the proposition has

the concepts of 5, 7, and the concept of summing the two together, but it does not

have the concept of the sum itself, namely 12. No amount of analysis of these three

concepts will result, according to Kant, in the concept of 12. Instead, I must construct

that concept via a synthesis of concepts into something new.

The picture for Poincaré, I argue, is different. Poincaré agrees with Kant that all

of mathematics is synthetic. However, this syntheticity stems not from the synthetic

construction of arithmetic concepts in each and every arithmetic judgment. Rather,

it is based on the requirement that fundamental mathematical axioms must be con-

sidered synthetic (in fact synthetic a priori) propositions because their truth is not

determined by their meaning. Poincaré writes that synthetic a priori judgments are

those “that can neither be demonstrated analytically, nor reduced to identity, nor es-

tablished experimentally”[46, p.146]. Later, he accuses Russell of asserting the truth

of his axioms because of their synthetic character (p. 29). Poincaré’s conception of

syntheticity is purely epistemic, and flows through the axioms to all later proposi-
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tions. Moreover, Poincaré’s notion of syntheticity is highly psychological in character,

resembling psychological necessity, rather than the constructive character of Kant’s

syntheticity. Whereas “7 + 5 = 12” must be apprehended synthetically for Kant, for

Poincaré it is a trivial consequence of the axioms, which have the synthetic status.

It is also important that Poincaré’s conception of syntheticity necessarily relies

on an axiomatic structure. Kant is opposed to axiomatic structures in general.

As regards magnitude (quantitas), that is, as regards the answer to be
given to the question, ’What is the magnitude of a thing? ’ there are no
axioms in the strict meaning of the term, although there are a number of
propositions which are synthetic and immediately certain (indemonstra-
bilia) [36, A 163-44].

Because of this denial, a Poincaréan style conception of the synthetic is not

available to Kant. This divergence marks a key way in which Poincaré’s philosophy

of mathematics is not purely Kantian.

2.4.2 Intuition

Both Kant’s and Poincaré’s respective conceptions of syntheticity follow from their

respective conceptions of intuition. Given that their understanding of the synthetic

is different, it should be no surprise that their notions of intuition differ as well.

For Kant, intuition is “a species of representation (Vorstellung) of, in the language

of Descartes and Locke, an idea” [41, p.111]. Intuition is a way for the mind to relate

to objects. There are criteria that differentiate intuition from concept:7

[Knowledge] is either intuition or concept (intuitus vel conceptus). The
former relates immediately to the object and is single, the latter refers to
it immediately by means of a feature which several things may have in
common [36, A320]

For Kant, intuition is both singular and immediate. The immediacy criterion

7Parsons cites the following passage in his [41].
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mirrors Poincaré’s conception of intuition as psychological necessity(§2.2.3)—though

it lacks the explicitly psychological basis.8 The singularity criterion, however, is

distinct to Kant; Kant holds that intuitions are about particular objects; this is in

contrast to concepts that can relate to generalities.

Particularity makes every mathematical judgment a judgment about intuitions

for Kant. If intuition is the only method to obtain mathematical knowledge (as Kant

claims), then we must come to learn about each mathematical judgment individually.

Intuition is how we know that 5 + 7 = 12 is true, as is 3 + 4 = 7, but not how we

know the rules of addition.

Poincaré’s notion of intuition fails to have this particularity condition. In fact,

I argue in §2.2.1 that a main theme of Poincaré’s conception of intuition is as an

ability. Poincaré claims that intuition enables us to recognize the uniformity in the

procedures of mathematics to gain a full understanding of addition.

Poincaré’s philosophy of mathematics was largely Kantian, but two of the cen-

tral features to his philsophy of arithmetic—intuition and syntheticity—difffer signif-

icantly from Kant.

8Parsons’s interpretation of the immediacy criterion could be read in a psychological manner. He
writes, “[The immediacy condition] means that the object of an intuition is in some way directly
present to the mind, as in perception, and that intuition is thus a source, ultimately the only source
of immediate knowledge of objects”[41, p.112]. However, this discussion is beyond the scope of the
current inquiry.
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Chapter 3

Hilbert

Poincaré’s attack on those who sought to ground mathematics in logic was both

widespread as well as indiscriminate. There was little differentiation between Hilbert,

Dedekind, Cantor, Russell, or Frege in any given attack. All were simply derided as

“logisticians” who had made little progress in the foundations of mathematics. Given

that he did not discriminate between wholly distinct philosophers, Poincaré did not

distinguish their continually evolving views. Of course, in the case of Hilbert, such

differentiations were not possible, as Poincaré died in 1912, before the revision of

Hilbert’s main views in 1918 and later.

There are three primary aims of this chapter. First, to elucidate the discourse

between Hilbert and Poincaré in the first decade of the 20th century, arguing that

Poincaré’s criticism of Hilbert’s nascent program were warranted and effective. Sec-

ond, to interpret Hilbert’s later project by developing four distinctions made by

Hilbert: theory vs. metatheory; finite vs. transfinite; idea vs. concrete; and formal

vs. contentual. These four contrasts serve to be a substantial, novel interpretation

that explains Hilbert’s response to Poincaré. Third and finally, to evaluate whether a

reformulation of Poincaré critique is viable against Hilbert’s fully-fledged system. In

so proceeding, the chapter will refer to the Hilbert of 1900 and 1904 as the “early”
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Hilbert and the post-1918 Hilbert as the “later” Hilbert.

To achieve the stated goals, I will first outline the early Hilbert’s attempt at an

axiomitization of arithmetic as outlined in his 1904 On the foundations of logic and

arithmetic. Second, I will examine how Poincaré’s broad petitio argument is viable

against this early line of thought by Hilbert. Third, I will reconstruct later Hilbert’s

evolution from a tentative position to a fully formed program and develop a response

to Poincaré’s objection out of this system. Owing to the sparseness of Hilbert’s own

reply to this objection—a mere few polemical paragraphs—the discussion will evaluate

both Michael Detlefsen’s [13] and Marcus Giaquinto’s [22] respective reconstructions

of Hilbert’s argument, ultimately concluding that ultimately both positions have fatal

flaws.

3.1 Early Hilbert

Hilbert’s work on the foundations of mathematics can be separated into two distinct

eras: his early work from 1895-1904 and his later work, which began in 1917 but

rounded into shape only in the mid to late twenties. Hilbert’s return to a foundational

focus in his later period brought about a precisification of the sketches in his early

work into a fully developed project to prove the consistency of arithmetic via solely

finitistic methods. Understanding this relationship between the early and later work

can only be obtained via a thorough grasp of both periods. We begin with the early.

3.1.1 Hilbert’s Foundation of Geometry

Hilbert’s first project in mathematical foundationalism was to give a novel axiomatic

characterization of geometry that was divorced from any interpreted meaning. Hilbert’s

geometry was unlike Euclid’s in that it was not a description of points, lines, and other

such geometrical objects. Rather, it was a characterization of the relationships be-
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tween arbitrary objects. This approach is in contrast to Euclid, whose use of ‘point’

and ‘line’ actually refers to those very things. Thus, when Euclid claims that any 2

points define a single line, he is making a claim about the nature of points and lines:

for any two we make two (idealized) dots on a piece of (idealized) paper there is a

single (idealized) line that connects them.

However, Hilbert’s use of ‘point’ and ‘line’ does not refer to things commonly

understood to be points and lines (or rather he does not speak merely of these things).

In fact, Hilbert’s usage is abstracted from the interpreted meaning of the words.

In my opinion, a concept can be fixed logically only by its relations to other
concepts. These relations, formulated in certain statements, I call axioms,
thus arriving at the view that axioms (perhaps together with propositions
assigning names to concepts) are the definitions of the concepts.[20, Letter
from Hilbert to Frege, 7/11/1903]

The words ‘point’, ‘line’, and the rest are meaningless prior to axioms being laid

down; they receive meaning only through the system of relations to other concepts.

It is only by choosing a given set of axioms that the concepts of ‘point’, ‘line’, ‘circle’,

‘distance’, and any other geometrical notion gain a definition through their relations

to each other.

The procedure of laying down an axiomitization without an explicit interpreta-

tion was a radical shift from the mathematics that came prior to Hilbert. That the

concepts contained within the axioms are implicitly defined wholly and solely by the

axioms themselves—that they do not have a meaning outside this axiomitization—

shapes Hilbert’s later quasi-metatheoretical approach to proving the consistency of

arithmetic.

The best way to witness Hilbert’s conception of axioms operating as implicit

definitions of the concepts contained therein is to follow an example from Hilbert’s

text. For exegetical clarity and brevity, it is sometimes advantageous to employ

modern terminology, such as ‘syntactic’, ‘interpretation’, and the like. Such uses
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should not imply an attribution of such views to Hilbert himself. Following this

exegesis, I will return to Hilbert’s lack of these fundamental distinctions in his early

work—and how this absence renders him vulnerable to Poincaré.

Taking the elements point, line, plane, etc. as primitive, the axioms of Group II,

according to Hilbert, “define the concept of “between” and by means of this concept

the ordering of points on a line, in a plane, and in space is made possible.”[29, p. 5]

Axioms introduce conditions under which particular relations hold and define their

properties. The meaning of ‘between’ is simply a set of rules under which are licensed

certain assertions about points and the relation of between. Axiom II, 1 states,

Axiom II,1: If a point B lies between a point A and a point C then the points A,

B, C are three distinct points of a line, and B also lies between C and A.[29]

This axiom determines that ‘between’ is “symmetric” in the sense that if B lies

between A and C, then B also lies between C and A and, moreover, that A, B, and

C are all distinct points. However, given only Axiom II, 1, the full, standard meaning

of betweenness is absent; betweenness is an impoverished definition, for even the

ability to determine, given three points, whether any of them lie between the others

is impossible. Only the addition of further rules for the use of the relation ‘between’

makes it resemble our ordinary definition of betweeness.

In this example, Hilbert has provided a single rule governing the use of the relation

‘between’, but not defined in the traditional sense, what ‘between’ means. In modern

notion, Hilbert’s “definition” defines a three-place relation ‘MABC ’ as ‘B lies between

A and C’. Axiom II, 1 can be recast as a statement about the relation MABC rather

than about ‘between’ in any traditional sense. Axiom II, 1 would be phrased:

If a point B is such that MABC holds, then the points A, B, C are three
distinct points of a line and MCBA also holds.

Abstracting further away from the “traditional” notions of point and line, we can
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create a one-place predicate ‘Px’ defined as ‘x is a point’, define a three-place predicate

‘Lxyz’ as ‘x, y, and z are colinear’, and represent Axiom II, 1 wholly symbolically:

(PA ∧ PB ∧ PC ∧MABC) −→ (MCBA ∧ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ LABC)

Understanding Axiom II, 1 thus written divorces the three place relation M from any

prior intuition or knowledge of points, lines, or what it means for a point to lie be-

tween two others. Under the Hilbertian conception, this axiom (in combination with

the others) defines what it is for a point to be ‘between’ two others.1 In particular, it

depends on the definition of colinearity. By itself, it is unable to permanently fix the

definition of ‘between’. Hilbert’s goal in providing axioms is to give a purely syntactic

account that can be interpreted as the ordinary conception of geometry. However,

this axiomitization does not rely on any traditional understanding of Euclidian ge-

ometry; it does not presuppose, for instance, familiarity with points, lines, and the

like. Rather, Hilbert’s axioms provide a framework within which one is permitted to

work. Hilbert himself says,

But it is surely obvious that every theory is only a scaffolding or schema
of concepts together with their necessary relations to one another, and
that the basic elements can be thought of in any way one likes. If in
speaking of my points I think of some system of things, e.g. the system:
love, law, chimney sweep. . . and then assume all my axioms as relations
between these things, then my propositions, e.g. Pythagoras’ theorem,
are also valid for these things.[20, p. 40]

In short, Hilbert uses axioms to establish a framework within which we can use

concepts that are being “defined”. Geometry can be about chimney sweeps, laws,

cats or whatever on likes insofar as they obey the axioms—geometry has been recast

1I want to here acknowledge that this notion of implicit definition via axiom was and remains
quite controversial. Frege for one, in his correspondence with Hilbert, objects strenuously to this
idea. I want only to highlight this aspect of Hilbert’s perspective, and not argue for or against its
correctness.
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as not the study of points and lines but rather the study of the relationships between

arbitrary objects that accord with a set of given axioms. Definitions of terms are

not isolated in single lines, as in a dictionary. Rather, Hilbert believes that “only the

whole structure of axioms yields a complete definition” and to “try to give a definition

of a point in three lines is to [his] mind an impossibility.”[20, p. 40] Definitions are

only grasped in the context of a system of axioms and are made at (in modern

terminology) a syntactic level.

“Grounding” geometry is a matter of lay down a set of purely syntactic axioms

that can be interpreted semantically as the truths of traditional Euclidean geome-

try, and then proving that this set is consistent. Hilbert begins his Grundlagen der

Geometrie by describing his goal to set forth

a complete, and as simple as possible set of axioms and to deduce
from them the most important geometric theorems in such a way that
the meaning of the various groups of axioms, as well as the significance of
the conclusions that can be drawn from the individual axioms, come to
light.[29, p. 1, emphasis in the original]

The first desideratum is that the axioms must be complete; they must entail

every geometrical result that follows from the Euclidean axioms. Hilbert’s axiomatic

system must be able to recapture all the standard proofs of the mathematical corpus

that were then known as Euclidean geometry. For instance, from Hilbert’s axioms, he

should be able to prove that “In any triangle two sides taken together in any manner

are greater than the remaining one.”2 If Hilbert’s axioms fail to produce a Euclidean

result, then his characterization will have failed to be “geometry”.

Hilbert’s second desideratum is that the axioms of his system be “as simple as

possible.” This has a dual meaning for Hilbert. On a shallow, psychological reading,

Hilbert means that the axioms must not appear more complicated than those which

they intend to supercede. To provide a more obscure account of a subject whose

2Proposition 20, Euclid’s Elements, as translated by Heath, 286
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original exposition was a paragon of clarity would not be progress. The second more

technical and important interpretation of Hilbert’s requirement for simplicity is logical

independence: no axiom (or its negation) should be derivable via inference rules from

a subset of the others. This second interpretation makes Hilbert’s project so ambitious

and mathematically fruitful. While Euclid had come close to outlining a system of

axioms that were complete for (Euclidean) geometry, people had long denied the

independence of these axioms and attempted to prove the parallel postulate from the

other four axioms. For Hilbert to undertake a proof of the independence of this axiom

and succeed was a major step in geometry.

Fundamental to proving the independence of the axioms was to prove their con-

sistency. For if a set of axioms is inconsistent, then one can (trivially) derive any

conclusion from that set. Consequently, the negation of any the axioms can be de-

rived from the original set of axioms, violating Hilbert’s requirement that the axioms

be independent. The axioms must be shown to be consistent in order for them to be

shown to be independent. However, proving the consistency of the axioms was more

than a simple pre-requisite for Hilbert’s independence criterion. Instead, Hilbert saw

a proof of their consistency as a proof that established their truth.

. . . if the arbitrarily given axioms do not contradict one another with all
their consequences, then they are true and the things defined by the ax-
ioms exist. This is for me the criterion of truth and existence[20, p. 39-40]

For Hilbert, a proof of the consistency of his axioms for Euclidean geometry

simply is a of their truth.

Hilbert’s ultimate aim of grounding and/or justifying geometry can be achieved

only through two distinct goals: a reconstitution of Euclidean geometry using his

axioms and a proof of their consistency.3 The former goal is an exercise in for-

3A similar two-part strategy is employed by the neo-logicist. The neo-logicist must implicitly
introduce terms via abstraction principles and then show a reconstruction of traditional mathematics
from these new terms. See §5.2
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mal geometry, and thus outside the purview of the current investigation. However,

in order to achieve the latter, Hilbert proves the equiconsistency of his axiomitiza-

tion with arithmetic via a translational procedure that recasts geometrical notions

as arithmetical ones. Hilbert provides an arithmetic interpretation of his axioms

that proves the equiconsistency of his axiomatic geometry with arithmetic. By this

method, Hilbert shows that any proof of the inconsistency of his geometry would

likewise prove arithmetic inconsistent as well. Thus, Hilbert’s proof of the consis-

tency of geometry depends on the existence of a positive proof of the consistency of

arithmetic.4

3.1.2 Initial Sketches of the Consistency of Arithmetic

Hilbert first attempted to sketch a positive proof of the consistency of arithmetic in

a speech to the Third International Congress of Mathematics in 1904 titled Foun-

dations of Logic and Arithmetic. In it, Hilbert laid out his axioms for arithmetic

and demonstrated how he thought consistency might be proven via a syntactic proof.

Even though the formalization of such a consistency proof by purely arithmetical

means is impossible, as G’́odel later showed, an explicit exegesis of Hilbert’s attempt

will show the efficacy of Poincaré’s naive petitio.

Viewed through the lens of a modern logician, Hilbert’s attempt at a consistency

proof is wholly syntactic and metatheoretical. Hilbert first claims that all contradic-

tions have a certain form—the formal representation of any contradiction follows a

particular pattern. The proof argues that applying the axioms and rules of inference

always results in a sentence that does not exhibit the pattern characteristic of a con-

tradiction. Therefore, no contradiction can result from Hilbert’s axioms conjoined

4This model theoretic method is extremely fruitful mathematically and heretofore unknown, so
even if the ultimate aim of his project fails, Hilbert made incredible contributions. After Hilbert
however, these proofs common (for example, Boolos uses one in §5.1.3).
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with the rules of inference, and thus the axioms are consistent.

Though metatheoretic in that it is reasoning about the symbols, it is inappropri-

ate to call it such for Hilbert. Though his axioms are wholly syntactic, there remains

minimal differentiation between the syntactic and semantic. At this point in his

project, there is formalized metatheory or proof theory. This murky understanding

and lack of distinction at this early stage—because everything is ostensibly within the

theory—makes Poincaré’s petitio objection forceful. This objection will be returned

to in §3.1.3 after fully examining Hilbert’s proof. However, it is important to note

that Hilbert qualifies the proof in his address, saying,

In the brief space of an address I can merely indicate how I conceive of
this common construction. I beg to be excused, therefore, if I succeed
only in giving you an approximate idea of the direction my researches are
taking.[27, p. 131]

In responding to Poincaré’s objection in the later period, Hilbert claims that

Poincaré’s objection is only effective against this nascent position:

Under these circumstances Poincaré had to reject my theory, which, in-
cidentally, existed at the time only in its completely inadequate early
stages.[27, p. 473]

To critique early Hilbert is unfair given that he categorizes his position as provi-

sional and incomplete. However, such a critique is important for two reasons. First,

it shows how Poincaré’s petitio argument can be successful. Hilbert’s later return

to foundationalist questions are significantly refined, no doubt in part because of

Poincaré’s objection. In particular, Hilbert is forced to distinguish between the ob-

ject language of the theory and the metatheory. For now, we turn to the early Hilbert

and the effectiveness of Poincaré’s objection.
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Hilbert’s Formal System

Hilbert’s overall strategy for proving the consistency of his axioms is based on the

separation of all propositions into what he calls ‘entities’ and ‘nonentities’, the former

understood to be true propositions, while the latter are false propositions.5 Hilbert

must prove that it is not possible to derive from his axioms the inclusion of both a

and ā in the class of entities [27, p. 132].

Hilbert’s notation in On The Foundations of Logic and Arithmetic is quite cum-

bersome owing to the fact that it is merely a sketch of a more fully fledged notion

of proof theory. However, it is vital that full exposition be given in the original no-

tation, because Hilbert’s proof relies on the precise syntactic form of his formulae.

He argues that application of the rules of inference and the axioms to the primitive

symbols results only in formulas that do not have the syntactic form necessary to be

a contradiction—within the space of possible combinations of the strings of symbols

that count as formulas, there is a limited number of possible combinations that are the

result of correct applications of the axioms and all these combinations have a given

“shape”. All contradictions, Hilbert argues, have a different “shape” and fall outside

of possible results of reasoning from the axioms. Specifically, all contradictions have

a negated clause. Because the axioms and rules of inference do not result in a formula

with a negation, no series of legitimate maneuvers within the system will result in a

contradiction.

We now want to see the argument in full detail. Hilbert’s first primitive notion

is ‘1’, which is merely an object of our thought. It is without meaning and signifies

nothing. It is divorced of ordinary notions we ascribe to the symbol ‘1’. We can com-

bine it with itself to form longer collections of marks, what Hilbert calls combinations,

5Cf. “We call a a true proposition if a belongs to the class of entities; on the other hand, let ā
be called a true proposition if a belongs to the class of nonentities.”[27, p. 132]

53



or strings. For instance,

11

11111

1111111111111

are all combinations for Hilbert. Differentiation between two strings is achieved by

examining them to see if “the combinations deviate in any way from each other with

regard to the mode and order of succession in the combinations of the choice and

place of the objects 1 and [the second primitive object] = themselves”[27, p. 132].

For two combinations to be the same is simply for them to have the same marks in

the same order. Two combinations that are not the same length—for instance the

first and second combinations above—cannot possibly be the same. When examining

combinations containing only ‘1’, identity is nothing more than having the same

length. This sort of reasoning about the “shape” of combinations permeates both

Hilbert’s axiomitization and his consistency proof.

Any combination of these two primitive thought-objects is likewise considered a

thought-object and forms the domain over which Hilbert’s variables in his axioms will

range. The first two objects are demarcated as simple objects to differentiate them

from the combinations. This gives us sufficient background to understand the first

two of Hilbert’s axioms:

x = x (1)

{x = y a.w(x)}|w(y)6 (2)

The first of these is the statement of identity. The second axiom is Leibniz’s law

of the indiscernibility of identicals that states that any two things that are identical

6‘a.’ here denotes the conjunction.

54



share all of the same properties. In Hilbert’s own words, “from x = y and w(x), w(y)

follows,” meaning that if a predicate ‘w’ is true of x and x is equal to y, then w is

true of y as well. With these two axioms, Hilbert claims that he has formed “the

definition of the notion = (equals).”7 Wishing to avoid any controversy on whether

such axioms can define implicitly, I will not make such a bold claim and instead say

that Hilbert has (at least) governed the use of identity within his formal system.

Before moving on to the next three axioms, the remaining primitive notions must

be defined. They are u, f , and f ′ (as well as parentheses, though not mentioned

explicitly). ‘u’ is called by Hilbert ‘infinite set ’.[27, p.133, emphasis in original] The

string ‘ux’ is read as the claim that x is a member of the infinite set.

The two functions f and f ′ are more obscure. Hilbert calls them the ‘following’

and ‘accompanying’ functions respectively. Jointly, they play the role of the modern

successor function. However, for Hilbert, they are two different functions with differ-

ent domains. f ′ has a domain of all possible thought-objects, whereas f has a domain

restricted only to elements of the set U. As it turns out, Hilbert’s axiom 3 is the

statement that the two functions are identical over the domain of the infinite set.

He advances three additional axioms:

f(ux) = u(f ′x), (3)

f(ux) = f(uy)|ux = uy (4)

(f(ux) = u1) (5)

Axiom 3 should be read literally as, “The object which follows the element (of

7FLA, 132, emphasis in the original
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the infinite set) that is x is identical with the element (of the infinite set) that is the

result of the accompanying function applied to x.” Axiom 4 should be read as “If the

element that follows x equals the element that follows y, then the element x equals

the element y.” Finally, Axiom 5 should be read, “There is no element x such that

the element that follows it equals the element 1.”

Note that these axioms have been wholly syntactic in nature. They govern the

rules by which one may reason within Hilbert’s formal system. As such, they have

been given no fixed semantic meaning and consequently only produce a structure,

which is what Hilbert wants to prove consistent. If the syntactic structure is shown

consistent, then any interpretation of the rules will also be consistent. Of course one

interpretation—the intended interpretation—is standard arithmetic.

Proof of Consistency of Hilbert’s System

The five axioms listed above are not the only axioms Hilbert introduces to his system.

Notably, I have omitted the induction axiom, from which the Poincaréan objection

of circularity springs. I made this omission because Hilbert’s proof of the consistency

of the first five axioms is a necessary presupposition for the proof of the consistency

of every further axiom. By sketching how Hilbert intends to prove this basis—and

later arguing that it presupposes induction—I will show why a Poincaréan objection

is a good one.

To prove the consistency of the first five axioms is simply to show syntactically

that a contradiction cannot be derived from repeated application of the laws of infer-

ence and the axioms. A contradiction in the system can only have the form ‘a ∧ ā’,

where a is some combination of the five primitive thought objects. Because Ax-

iom 5 is the only axiom that results in a negation (something of the form ‘ā’), the

only contradiction that can be derived is the conjunction of Axiom 5 with the state-

ment ‘f(ux(0)) = u1’, where ‘x(0)’ represents some thought-object in the system (e.g.
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f1 = 1, ff1 = 111, fff1 = 1111, etc.). In order to show that this sort of contradictory

formula cannot arise, all Hilbert must show is that a statement of the form

f(ux(0)) = u1 (6)

cannot be derived from Axioms 1-4.

In order to prove that no statements of the form of equation 6 can result from

Axioms 1-4, Hilbert introduces the notion of “homogeneity of equations”, which he

defines as follows:

we call the equation (that is, the thought object) a = b a homogeneous
equation if a and b are combinations of two simple objects each, likewise
if a and b are combinations of three simple objects each or of four and so
forth[27, p. 134, my emphasis];

An equation is homogeneous when it has the same number of primitive objects

on both sides of the ‘=’; an equation is heterogeneous whenever it has a different

number of primitive objects on either side of the ‘=’. Though I have chosen to use

‘number’ to explain hetero- and homogeneity, Hilbert deliberately avoids doing so via

the use of examples and the phrase “and so forth”. An example of a homogeneous

equation is f1 = f1. An example of a (false/non-entity) heterogeneous equation is

f1 = ff1, since there are two simple objects on the left of the equation and three on

the right.

Hilbert claims that only homogeneous equations follow from applications or reit-

erations of Axioms 1 through 4. This claim is trivially true for Axiom 1 and for Axiom

2, since the former is the smallest of all homogeneous equations and the latter does not

have as its main statement an equation. For Axiom 3, it is also evidently true since

f(ux) = uf ′x is homogeneous for any object x. Finally, both the premise of Axiom 4

and the conclusion are homogeneous (f(ux) = f(uy) and ux = uy respectively)given

Hilbert’s definition of equality.
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Thus, any statement of Axioms 1 or 3 or an application of Axiom 2 or 4 must

result in a homogenous equation. Thus, a heterogeneous equation like 6 cannot be

a logical consequence of Axioms 1 through 4. To repeat, the left side of an equation

of the form of 6 must have at least three simple objects (f , u, and whatever x(0)

represents) while the right side has at most two (u and 1). Therefore, since equations

exhibiting the form of equation 6 are the only way for a contradiction to arise, there

can be no contradiction derived from Axioms 1-5.

Consistency Results

Hilbert thinks his result successful and from its success, he draws a number of powerful

conclusions. First, due to his position that the consistency of a mathematical entity

guarantees its existence, the thought objects u, f , and f ′ have been proven to exist.

This result is particularly important in the case of u, since by demonstrating its

existence, Hilbert thinks he has proven the existence of the infinite:

So far as the notion of the infinite u, in particular is concerned, the as-
sertion of the existence of the infinite u appears to be justified by the
argument outlined above; for it now receives a definite meaning and a
content that henceforth is always to be employed [27, p. 134, emphasis in
original].

The major result, however, is a proof of the consistency (and therefore existence)

of mathematics. As noted above (p. 56), the intended interpretation of Hilbert’s

axioms results in standard arithmetic. Axioms 1 and 2 govern the use of ‘equals’

within Hilbert’s system and mirror how ‘equals’ is used in arithmetic. Interpreting u

as the set of integers and f and f ′ as the successor function, Axiom 3 states that every

integer has a successor that is also an integer. Axiom 4 states that if the successor

of x and the successor of y are equal, then x = y. Axiom 5 states that 1 is the

successor of no integer, or, alternatively, 1 is the first integer. Interpreting the axioms

in this way does not wholly prove the consistency of arithmetic, but does establish
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the foundation from which, proceeding in a similar manner, one can demonstrate the

consistency of all of arithmetic. To get to the next step—a proof of the smallest

infinite or ω—Hilbert himself says,

If we translate the well-known axioms for mathematical induction into
the language I have chosen, we arrive in a similar way at the consistency
of this larger number of axioms, that is, at the proof of the consistent
existence of what we call the smallest infinite (that is, of the ordinal type
1, 2, 3, . . . ) [27, p. 135, emphasis in original].8

By continuing to prove that ever growing sets of axioms are consistent, Hilbert

has outlined how he believes the consistency of arithmetic will be proven. The math-

ematical heavy lifting is present in his initial proof of the consistency of Axioms 1-5.

3.1.3 Poincaré’s Petitio against Early Hilbert

Poincaré dedicates a brief section in his Mathematics and Logic: II to addressing

Hilbert’s attempt at proving the consistency of arithmetic [42, pp 166-170]. There is

little explication of how Hilbert is supposed to have presupposed mathematics in his

derivation of mathematics. Poincaré only offers that Hilbert has used ‘two’, ‘three’,

or ‘several times’ repeatedly in defining a combination of primitive symbols [42, p.

167]. This objection is somewhat uncharitable to Hilbert, as these uses of number

are only for the purposes of elucidating what is being defined, rather than in the

formal definition itself. However, Poincaré’s objection can be refocused on another

part of Hilbert’s program—one in which he implicitly assumes number in a formal

definition—and effectively challenge Hilbert’s Proof.

In the petitio’s simple form, Poincaré accuses Hilbert of presupposing a concept

of number in his purely syntactic proof. He argues that Hilbert’s consistency proof

implicitly assumes the principle of mathematical induction. Since the axiom of math-

8Note that this definition of the smallest infinite is a more restrictive notion that that of the
previously defined infinite u.
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ematical induction is one of the things of which Hilbert proves the consistency(and

thus also the existence), there is circularity in his reasoning. Due to this circularity,

Hilbert fails to prove the consistency of his axioms.

A revised Poincaréan critique attaches itself in two different places in Hilbert’s

above proof. First, he necessarily uses induction to prove that whenever Axioms

1-4 are applied to a homogeneous equation, it results in a homogeneous equation.

When Hilbert says, “Axiom 3 yields only homogeneous equations if in it we take

any thought-object for x,” he implicitly relies on induction to guarantee the truth of

the claim [27, p. 134]. Recall that Axiom 3 states f(ux) = u(f ′x). Hilbert claims

that substituting any thought object for x into Axiom 3 results in a homogeneous

equation. The proof of this claim must first show that it holds for thought-objects

x composed of one simple object, then for x composed of two simple objects, and

so forth. This “so forth” is an implicit application of the principle of mathematical

induction. Hilbert relies here on an intuitive understanding that if the homogeneity

of Axiom 3 holds for a thought-object of length n, then substituting a thought object

of length n + 1 also results in a homogeneous equation. In order to progress from

the truth of this claim to the statement that it holds for all possible thought objects,

Hilbert must employ PMI.

The second place that a refocused Poincaréan style objection is pertinent against

Hilbert is in the well-definedness of the concept of homogeneity in the first place.

Hilbert’s definition of homogeneous is recursive. Recall that every recursive defini-

tion necessarily relies on an inductive inference to demonstrate that the definition

is well formed for definiendum of arbitrary length. Hilbert’s definition relies on the

reader’s intuitive grasp of induction and inductive mathematical reasoning to define

homogeneity.

Both of these instances, it is important to note, do not occur in explanatory

remarks or otherwise non-essential places. The first instance involves a claim central
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to Hilbert’s proof that only homogeneous equations result from applications or state-

ments of the axioms. The second instance occurs in a formal definition essential for

the proof. It is not possible, therefore, for Hilbert to do what Poincaré would call a

“patching-up” and remove these instances of mathematical induction.

The intuitive leap that Hilbert relies on in these two instances is precisely what

Poincaré argues is inseparable from the foundations of mathematics; it is the crux of

his objection (see §2.3.1). By relying on this intuition, Hilbert has failed to give an

acceptable, non-circular proof of the consistency of Axioms 1-5. Further consistency

proofs for additional axioms rely on similar strategies that could be attacked in a

similar fashion, but there is no need to do so, because they necessarily rely on a

successful proof of the consistency of Axioms 1-5. Thus, Hilbert has not successfully

produced a proof of the consistency of arithmetic.

3.2 The Development of Hilbert’s 1920s Program

Each of four major papers throughout the 1920s mark a significant development in

Hilbert’s program to justify and clarify the foundations of mathematics. The first

three papers all solidify a substantial differentiation in Hilbert’s proof theory while

also providing inklings of the distinction to be drawn in the next one. The current

section will impose a partially artificial structure on these papers in order to present a

clear account of four vital, yet often implicit contrasts in Hilbert’s system. This clear

account will then enable the construction of a proper Hilbertian reply to Poincaré’s

objection.

The new grounding of mathematics: first report [31] introduces a boundary be-

tween the theory and the metatheory that was only implicit in Hilbert’s earlier papers.

The logical foundations of mathematics [30] distinguishes between finite and transfi-

nite reasoning, equating the former with the object language and the latter with the
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metatheory introduced in the prior paper. On the Infinite [28] establishes ideal propo-

sitions in contrast to concrete propositions. Ideal propositions are axioms adjoined

to the concrete propositions of the object language for the purpose of expanding the

mathematical power of the object language. Finally, all three distinctions are em-

ployed most clearly in The foundations of mathematics [26], wherein Hilbert thought

his critics answered. Throughout these four papers, one final contrast is implicit and

never formally mentioned: purely formal reasoning verses contentual (inhaltliche)

reasoning.

3.2.1 Theory vs. Metatheory: 1922

Early Hilbert’s attempt at a proof of the consistency of mathematics employed a

proto-proof theory. The attempt at a positive proof examined the structure of

the proofs, defined a purely syntactic property (heterogeneity), and demonstrated

first that any contradiction had this property and second that no proposition with

this property could result within the proof system (§3.1.2). It was vulnerable to

a Poincaréan style objection because the system lacked a formalized differentiation

between reasoning done with the symbols and reasoning done about the symbols them-

selves. A semantic/syntactic distinction was absent, as was differentiation between

the object language and the proof theoretic language.

In 1922, Hilbert made this distinction. He introduced the object level, in which

there were only the ‘number-signs’ that “are themselves the object our consideration,

but otherwise they have no meaning [Bedeutung ] of any sort” [31, p. 29]. The formal

system is restricted at first to definitions of formulas, signs, and the length of signs.

As an example of the sort of proof possible in such a limited system, Hilbert gives

a sketch of a proof of the statement ‘a + b = b + a’ for any strings a and b. By so

restricting the system, Hilbert confidently claims, “. . . no contradictions of any sort
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are possible. We simply have concrete signs, objects, we operate with them, and

we make contentual [inhaltliche] statements about them”[31, p. 31].9 Though this

restricted system cannot prove much, it provides the basis to which the addition of

axioms allows Hilbert a derivation of arithmetic.

However, the introduction of any new axioms immediately requires a proof of

those axioms’ consistency. The way that Hilbert endeavors to perform such a proof

is by

mov[ing] to a higher level of contemplation, from which the axioms, for-
mulae, and proofs of the mathematical theory are themselves the objects
of a contentual investigation. But for this purpose the usual contentual
ideas of the mathematical theory must be replaced by formulae and rules,
and imitated by formalisms. . . and at the same time it becomes possible
to draw a sharp and systematic distinction in mathematics between the
formulae and formal proofs on the one hand, and the contentual ideas on
the other [31, p.33]

Postponing a full discussion of the contentual/formal contrast until §3.2.4, these

two terms for the time being should be read as shorthand for ‘having some meaning’

and ‘pure manipulations of symbols’.10 Hilbert not only differentiates the subject

matter of the theory and the metatheory, he also differentiates between the type of

reasoning that takes place in each. The subject matter of the theory is solely composed

of the basic symbols. It is the instantiation or application of axioms to form proofs.

9Note the use of inhaltliche even in this early paper. There will be numerous uses of the contrast—
particularly in the following quotation—throughout the next three sections, but discussion of this
distinction will be postponed until §3.2.4

10I do not want to impute to Hilbert the sort of formalism wit which he is often labeled , something
akin to thinking that mathematics is simply a game that one plays with symbols devoid of meaning.
In fact, the inclarity with which he uses the terms ‘contentual’ and ‘formal’ suggests his reluctance to
accept that particular view of mathematics. In particular, I think that Hilbert wants to say that the
operations in the object language are purely formal insofar as they have no given content. However,
in reading them and doing the manipulations, I can impute some content or meaning to the proof,
even if it lacks that “official” meaning. For example, when I prove that ‘a+ b = b+ a’ in the object
language, it has no meaning. What I have shown is merely something about strings. However, I
might whisper to a student who is not understanding, “Pssst, what I’m doing here is proving the
commutativity of addition of integers.” In this way, I can think or reason contentually about purely
formal notions.
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Reasoning within this object language is wholly and completely determined by the

axioms and is solely the manipulation of eligible objects according to given rules. In

contrast, Hilbert has as the subject matter of the metatheory those very things that

are taking place in the object language: proofs, formulae, and axioms. Reasoning

in the metatheory has content since it is about something, whereas object language

manipulations are uninterpreted and purely syntactic. This distinction is brought out

explicitly by Hilbert:

To reach our goal[of proving the consistency of the axioms in the object
language], we must make the proofs as such the object of our investigation;
we are thus compelled to a sort of proof theory which studies operations
with the proofs themselves. For concrete-intuitive number theory, which
we treated first, the numbers were the objectual and the displayable, and
the proofs of theorems about the numbers fell into the domain of the
thinkable. In our present investigation, proof itself is something concrete
and displayable; the contentual reflections follow the proofs themselves
[31, 59, emphasis in original].11

The purpose of the metatheory, or as Hilbert calls it the ‘metamathematics’, is

to prove the consistency of the axioms in the object language. Thus, he envision the

process of deriving mathematics as a two step cycle. Step 1 is to derive provable for-

mulas within the object language using the existing axioms. This first step provides

the desired mathematical results. However, once the fruitful results of the current set

of axioms are exhausted, proceed to Step 2, which adds new axioms to the already

existing axioms and proves their consistency via metamathematical means. Having

proven the new axioms’ consistency, Step 1 begins again to obtain more mathemat-

ically fruitful results. Once all the necessary axioms are introduced, the whole of

arithmetic is a consequence.

By explicitly bifurcating the theory and the metatheory, Hilbert has a potential

response to the Poincaréan style objection of circularity. To the charge that he em-

11Note also the use of ‘concrete’. This subject will be taken up in §3.2.3
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ploys induction in the proof of the consistency of the axioms (on of which is induction

itself), Hilbert could reply that because the purported consistency proof is done in

the metatheory, the principle of induction employed is metatheoretical rather than

theoretical. Metatheoretical induction is utterly different from the formal principle

of induction. Hence, Poincaré’s objection is defanged. On the face of it, this rebuttal

seems effective and complete. However, this efficacy will become our topic later in

section §3.3.

3.2.2 Finite vs. Transfinite: 1923

Hilbert’s next paper clarifies the proof theory of 1922. Of particular importance is

his differentiation between finite and transfinite reasoning. Given that the theory is

intended to reproduce all existing mathematical results, a limitation to purely finite

logic is too restrictive. Elements of mathematics are excluded from this system. How-

ever, the epistemic basis for Hilbert’s work arises out of its simplicity and surveyability

(see p.62) Hilbert writes,

But in our proof theory we wish to go beyond this domain of finite logic,
and we wish to obtain provable formulae that are the images of the trans-
finite theorems of ordinary mathematics [30, 13].

In an attempt to resolve this dilemma, Hilbert introduces the single transfinite

axiom that is to be the sole source of any non-finite conclusion: The axiom reads:

A(τA)→ A(a) (TF Axiom)

In non-technical language, this axiom says that if some predicate A holds of the object

τA, then it holds for all objects a. The τ operator picks out a purported counter-

example, designating an object of which the predicate A does not hold. Therefore,

the axiom states that if the predicate holds even for a purported counter-example—it
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holds even for τA—then it holds for every object [14, p.1135]. If we imagine the

predicate ‘A’ to mean ‘bribable’, then τA is a man so morally upright that if he is

bribable, then so are the rest of the human rabble [30, 19].

The τ operator is the precursor (and dual) to the more well-known ε operator that

Hilbert introduces in 1925. Whereas the τ function picks out a purported counter-

example, the ε operator is intended as a choice function.

This lone axiom “is to be regarded as the original source of all transfinite concepts,

principles, and axioms”[30, 20]. By this limitation, Hilbert hopes to preserve the

epistemic security garnered from the earlier limitation to purely finite reasoning.

The question arises as to what type of reasoning is permitted in the metatheory.

Presumably, it might seem that if the theory permits transfinite reasoning, then so

should the metatheory. However, the metatheory must guarantee the epistemic basis

of the theory, and the only reliable epistemic basis for Hilbert is finite reasoning. The

objects of the metatheory are concrete displayable proofs. These objects are all finite,

and thus there is no need to involve transfinite reasoning.

This differentiation is borne out in the text, in Hilbert’s sketch of a consistency

proof of the axioms. This proof proceeds along familiar ground, closely resembling

the proof offered in 1904: show via considerations of the form of the proof that a

contradiction cannot be derived from the given axioms. In Hilbert’s own words,

The basic idea of such a proof [of consistency] is always as follows: we
assume that we are presented with a concrete proof having the end-formula
0 6= 0 . . . Then, by considering the matter in a finite and contentual way,
we show that this cannot be a proof satisfying our requirements[30, 23].

Hilbert’s strategy is to provide a metatheoretical proof schema wherein any pur-

ported (finite) derivation of a contradiction in the theory is shown to fail to be a

proof. Because all proofs are finite, this proof schema will suffice to demonstrate that

the theory is free from contradiction. Moreover, because the metatheory is finite, it
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attains the secure epistemic footing required to eliminate doubt in the foundations of

mathematics.

3.2.3 Ideal vs. Concrete: 1925

There are two apparent problems with Hilbert’s project in 1923. First, it is prima

facie implausible that it is possible to prove the consistency of a set of axioms of a

theory using a weaker theory.12 Particular to Hilbert’s program, it seems unlikely

that a finitist metatheory has a theorem stating the consistency of a transfinite the-

ory. Second, the transfinite theory stands at odds with Hilbert’s attempts to restrict

foundational work to the most epistemically simple and clear cases. Hilbert holds the

view throughout the 1920s that the only area within which we are able to safely infer

and reason are finite domains. How is the introduction of a transfinite axiom not in

violation of this prohibition?13

These two worries are answered in his 1925 paper, On the Infinite, wherein he

clarifies the epistemic status of transfinite propositions and axioms within the theory.

These transfinite propositions—what he dubs ‘ideal’—are distinguished from the finite

propositions of the theory—what I will call ‘concrete’.14 Through this differentiation,

the hope is that transfinite reasoning within the theory is accessible even though the

12Clearly the finite metatheory is weaker than the transfinite theory, as the theory contains all
finite results plus all those results obtained by the addition of the lone transfinite axiom.

13Gentzen, a student of Hilbert’s school, was attempting to do something of this sort even into
the 1930s after G’́odel’s result. Gentzen recognizes that an absolute consistency proof is impossible,
writing that “A consistency proof can merely reduce the correctness of certain forms of inference to
the correctness of other forms of inference” [21, p.138]. He then goes on to formulate a proof of the
consistency of elementary number theory along Hilbert’s lines, wherein he employs induction to show
that he can reduce the instances of the only connective that could lead to contradiction. In this way,
it is very similar to Hilbert’s 1927 approach. Gentzen holds that his proof is a reduction because he
does not employ complete induction, but rather only induction up to ε0. This notion of induction,
he asserts, can be construed finitarily and therefore is suitably a reduction. However, it is important
that this is still induction, and it is still the case that Poincaré would argue that understanding that
the proof is universally true presupposes an understanding of complete induction.

14Though this usage is not extensive throughout Hilbert’s papers, it does agree with his usage
and is the most illuminating in terms of contrast with ideal. See, “We simply have concrete signs or
objects” [31, 31].
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theory itself retains the privileged epistemic status of the purely finite.

The distinction is born out of a method, common in mathematics, of introducing

new elements to a system to complete the rules by making them more symmetric,

harmonious, or universally applicable. The introduction of these ideal elements create

a more powerful system able to address a broader range of topics. It is not surprising,

given his axiomitization of geometry, that Hilbert harkens back to the Euclidean plane

to introduce this method of ideal elements as a solution to the problems facing his

finitistic project.

Consider what Hilbert dubs the “Axiom of Connection”:

(AC)Any two points on the plane are connected by one, and only one, line.

The geometric dual of this axiom—the statement obtained by replacing ‘point’

with ‘line’, ‘line’ with ‘point’, and ‘are connected by’ with ‘intersect at’—however,

fails to be true, since it is:

(AC∗) Any two lines on the plane intersect at one, and only one, point.

This dual must be couched with the caveat that (AC∗) fails in the case of parallel

lines. The axiomitization of ordinary plane geometry has a fundamental asymmetry:

any two points determine a single line without exception, while the same is not true

for any two lines determining a single point. Hilbert outlines how to correct this

asymmetry.

But, as is well known, the introduction of ideal elements, namely, points at
infinity and a line at infinity, renders the proposition according to which
two straight lines always intersect each other in one and only one point
universally valid[28, p.372].

The introduction of ideal elements in plane geometry is aimed at a very particular

purpose: banishing asymmetries in the system and thereby making the geometrical
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rules universally applicable without exception. Their advantage—and therefore their

raison d’être—is that they make “the system of the laws of connection as simple and

perspicuous as is at all possible”[28, pp.372-3]. Introducing both a point and a line

at infinity makes the Axiom of Connection and its dual true. Let the point at infinity

be ω and the line at infinity be λ. We now prove that both (AC) and (AC∗) are true

in this new, expanded geometry that includes ideal elements.

(AC) For any two points {a, b}, if a, b 6= ω, the line l that connects {a, b} is con-

nected by the line guaranteed to connect a with b by the axiom of connection in

traditional plane geometry. If, without loss of generality, a = ω, then λ connects

a = ω with b.

(AC∗) There are three cases. For any two lines l and m,

1. If l,m 6= λ and l is not parallel to m, then l and m intersect at the point

guaranteed by the logical consequence of the original axiom of connection in

traditional plane geometry.

2. If l,m 6= λ and l is parallel to m, then l and m intersect at point ω.

3. If, without loss of generality, l = λ, then l intersects m at point ω.

The addition of these two ideal elements has made possible the duality principle

of geometry—that concepts have a dual with which they may be interchanged pro-

ducing a new result. A similar strategy appears in the field of analysis. Prior to the

adjunction of complex numbers to the reals, polynomial equations such as y = x2 + 4

lack any roots. Any claim made about roots of a polynomial must, in this weaker

system, be made with caveats regarding the existence of such roots. However, once

the complex numbers are introduced, these caveats may be done away with. All

polynomial equations have as many roots as their degree (counting the repetition of
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roots). The theorems and results of analysis are universally applicable because of the

addition of these ideal elements.

However, a discussion ‘adjunction’, ‘addition’, and ‘introduction’ of these ideal

elements necessitates an examination of their ontological status. Are they on the same

footing as the elements to which they are being introduced? Does the new system

replace completely the old system? Is a distinction between these new elements and

the old elements worth maintaining?

On this matter, Hilbert draws a sharp line separating the old from the new,

between the concrete and the ideal. In discussing the geometric example, Hilbert

says, “. . . the points and straight lines of the plane are initially the only real, actually

existing objects”[28, p.372] This quotation suggests that Hilbert holds that these new

elements at infinity are different from the original ones. However, he uses the word

‘initially’, so perhaps the actual existence of the ideal elements is marked by their

introduction to the system.

The proper context, however, clarifies that Hilbert is vehemently opposed to as-

signing the same ontological status of the original elements to the new ideal elements.

The introduction of this example comes in the midst of a lengthy discussion of the

infinite. More precisely, it comes at the conclusion of a passage wherein Hilbert ar-

gues against the actual existence of the infinitely small or infinitely large. For the

former, Hilbert argues that considerations of relativity made it necessary to relinquish

Euclidean geometry and replace it with elliptical geometry, doing away with ideas of

the infinitely large actually existing in nature. As for the latter, Hilbert says,

. . . we do not find anywhere in reality a homogeneous continuum that
permits of continued division and hence would realize the infinite in the
small. The infinite divisibility of a continuum is an operation that is
present only in our thoughts; it is merely an idea, which is refuted by
our observations of nature and by the experience gained in physics and
chemistry [28, p.371].
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Hilbert denies the actual existence of infinite quantities, either infinitely small

or large, and concludes that there is nothing to recommend their actual existence

in mathematics. Rather, instead of actually existing, Hilbert assigns an essential

heuristic role to the infinite in mathematics.

Yet it could very well be the case that the infinite has a well-justified place
in our thinking and plays the role of an indispensable notion [28, p.372,
emphasis in original].

The ontological justification for the existence of the infinite extends only as far as

it helps our reasoning and thinking. Returning to the geometry example, the point at

infinity does not exist in the same way as the rest of the points in the plane. Rather,

it is a kind of useful fiction—we can talk about it, reason with it mathematically,

and even use it to prove interesting results. Ultimately, its existence is justified solely

by the extent of its usefulness, whereas ordinary points are ontologically secure and

basic. Note that the introduction of the point and the line at infinity does not make

the principle of duality true. Instead, it clarifies its use by creating a more powerful

system within which the principle of duality has no exceptions. It is by making these

sorts of calculations simple, the ideal elements are said to exist for Hilbert.15

This sort of existence allows Hilbert to introduce ideal elements while keeping the

only epistemically relevant elements concrete. Concrete propositions are the ontolog-

ical simples of the theory; their existence is actual, in contrast to ideal elements that

exist only as helpful tools for proving things about the concrete objects. The differ-

ence between the ontological status (and thus epistemic status) of ideal and concrete

permits Hilbert to address the two potential issues raised at the beginning of this

section. First, there is not a finite metatheory proving the consistency of a transfinite

theory; instead, the finite metatheory proves that the adjunction of ideal elements

to a finite metatheory does not cause contradictions. The theory remains fundamen-

15There is resonance here with the role of the infinite and Poincaré’s own view of the infinite as
a non-existing, mental construct. Compare to §2.3.2

71



tally finite in nature. Hence, Hilbert can classify the transfinite axiom (page 65) as

an ideal element of the system and employ it without sacrificing epistemic certainty.

Second, Hilbert’s introduction of ideal elements brings the theory in accordance with

his prohibition of infinite reasoning, because what appears to be infinite reasoning

using ideal propositions is actually indirect reasoning about finite propositions. Ideal

propositions are employed only because of convenience of communication —they hold

no epistemic status beyond indicating how authentic, formal, finite reasoning should

proceed.

3.2.4 Formal vs. Contentual

Unlike the first three, there is no seminal paper that draws this contrast into sharp

relief. Instead, the distinction becomes clear over the course of Hilbert’s papers.

The formal/contentual distinction appears straightforward, but only in light of the

ideal/concrete distinction. Once the contrast between ideal and concrete propositions

is established, it is clear how to characterize Hilbert’s conception of formal versus

contentual.

Formal reasoning is reasoning done solely through the manipulation of symbols

according to a set of rigid rules. It is defined purely by its form, lacking any interpreted

meaning behind the symbols: it is purely syntactic.

Contentual reasoning on the other hand, has content. There is an intended

interpreted meaning. For Hilbert, a contentual proposition is one that attempts to

communicate an idea to the reader and does so with an intended meaning. The mark

‘1’ is trivially formal, because it is a basic element of the theory, a concrete element

devoid of meaning. Just as trivially, ‘2’ is contentual, since it has a meaning: it is

intended to communicate to the reader the mark ‘11’. Similarly, ‘24’ is contentual

because it means ‘111111111111111111111111’. Formal reasoning takes place when
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and only when concrete objects are involved; contentual reasoning takes place in all

other cases, but can be marked out positively by the presence of some identifiable

meaning.

An example of the differentiation between contentual and formal reasoning will

help illuminate this dichotomy—necessarily, the distinction mirrors the distinction

between ideal and concrete. Hilbert [28] distinguishes between propositions like

1 + (1 + 1) = (1 + 1) + 1

and

1 + 2 = 2 + 1

and

a+ b = b+ a.

The first counts as a concrete, formal proposition. Its epistemic value derives from

the fact that it is finite, surveyable, and epistemically secure. The second is also

concrete, but strictly speaking, fails to be formal because the ‘2’ means something.

It is a method of conveying a formal equation in a shorter, easier to understand

manner. Its epistemic value trades on the fact that it communicates a finite, formal

proposition, but is not a finite, formal proposition itself. Finally, the third proposition

is composed of ‘a’ and ‘b’, which are uninterpreted formal objects without finite

content. It is an ideal, transfinite proposition. Its epistemic value derives not from

immediate grasp of its content but from its derivability from the transfinite axiom

(page 65). Formal reasoning must involve only propositions that resemble the first

equation. Contentual reasoning takes place involving equations that resemble the

second and third equations.

A proof using ideal propositions will necessarily be contentual. It can provide a
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proof-sketch of properly formal, finitary proofs, but does not formally prove anything.

For instance, a proof of the statement 1 + a = a+ 1 can be accomplished through the

application of the mathematical induction axiom. We show that 1 + 1 = 1 + 1 is true.

Then, we assume that 1 + n = n + 1 holds and show that 1 + (n + 1) = (n + 1) + 1

holds. Via the ideal principle of induction, we will have then shown that for all a, the

statement ‘1 + a = a + 1’ is true. But for Hilbert, the proof just given is not a real

proof in the sense that it is not wholly formal and finite. It is merely a useful way of

communicating both that there is a finite, purely formal proof of that equation and

giving an outline of how to proceed.16 It is short hand for an infinite collection of

real proofs, for example, the proof that shows that ‘1 + 57 = 57 + 1’ is true. Hilbert

draws the distinction thus:

If we generalize this conception [of treating ideal propositions as com-
municating finite propositions], mathematics becomes an inventory of
formulas—first, formulas to which contentual communications of finitary
propositions [hence in the main, numerical equations and inequalities] cor-
respond and, second, further formulas that mean nothing in themselves
and are the ideal objects of our theory [28, p.380, emphasis in original]

The first set of formulas Hilbert mentions here is the set of contentual propositions

composed of numerals and normal mathematical symbols that serve to communicate

formal propositions made up of concrete objects. Their referents are the subject of the

theory make the goal of Hilbert’s project—the elimination of epistemic doubt in the

foundations of mathematics—possible by their secure epistemic status. The second

set of objects are the ideal propositions that provide the mathematical machinery to

derive arithmetic from Hilbert’s foundation.

How do these four distinctions help to clarify Hilbert’s project in the 1920s? They

do so by providing us a precise vocabulary to describe the details of Hilbert’s project.

16I should mention here that this interpretation of what Hilbert is doing in terms of the status of
proofs using ideal propositions is somewhat controversial. Detlefsen disagrees, but I will argue later
that Detlefsen’s reconstruction fails to avoid a serious Poincaréan objection, so the question of its
faithfulness to Hilbert in this regard becomes moot.
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Hilbert must provide an axiomatic foundation and then prove two things about it:

1) that it actually is a foundation for mathematics, and 2) that the foundation is

itself without doubt.17 The foundation that Hilbert provides is a finite, formal axiom

system about concrete, purely syntactic marks. Because it deals only with these

finite marks, Hilbert holds that it is beyond epistemic doubt.18 He proves that it is

a foundation by reconstructing arithmetic via the introduction of ideal axioms to the

theory, thereby allowing a contentual derivation of all mathematical results. However,

the introduction of these transfinite ideal elements means that the theory has drifted

from the epistemic safety of finitism into the danger of the transfinite. In order to

prove that these axioms have not led the project astray, Hilbert creates a proof schema

in the purely finite metatheory using solely finitary that the axioms can lead to no

contradiction. The proof proceeds by demonstrating that any purported proof of a

contradiction is not in obedience with the ideal axioms. Because any such purported

proof will be finite, this proof sketch is a contentual demonstration of a set of finite

proofs. Because of this finitism, Hilbert thinks the epistemic status of the theory is

secure.

3.3 Hilbert’s Reply to Poincaré

Hilbert has laid out a complicated structure in refining his initial sketches, yet the

seeds of the 1920s project lay in his early work—the metatheory/theory and to a lesser

extent finite/transfinite distinctions are present in undeveloped forms; the general

structure of the foundation, the commitment to proceeding via the axiomatic method,

17This two step process is nearly identical (in general terms) to the project of the neo-logicist, to
be examined in chapter 5.

18A Poincaréan would seize upon this claim and argue that Hilbert is holding a psychological
principle as bedrock (see §2.1.3). To some extent, I think there is a resonance here, but I think the
Hilbertian would respond that if finite reasoning is not beyond doubt, then total skepticism about
mathematics is the only viable position. Once the complete skeptical position is rejected, there must
be something taken as epistemically basic, though not because of psychology.
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and the attempt to prove the impossibility of the derivation of a contradiction by

purely syntactic means are all present. The pertinent question for current purposes

is whether or not this refinement can address a Poincaréan style petitio objection.

Hilbert certainly seems to think so when he writes,

Poincaré already made various statements that conflict with my views;
above all he denied from the outset the possibility of a consistency proof
for the arithmetic axioms, maintaining that the consistency of the method
of mathematical induction could never be proved except through the in-
ductive method itself. But, as my theory shows, two distinct methods
that proceed recursively come into play when the foundations of arith-
metic are established, namely, on the one hand, the intuitive construction
of the integer as numeral. . . that is contentual induction, and, on the other
hand formal induction proper, which is based on the induction axiom and
through which alone the mathematical variable can begin to play its role
in the formal system.

Poincaré arrives at his mistaken conviction by not distinguishing between
these two methods of induction, which are of entirely different kinds. . . [26,
p.473, emphasis in original]

However, this quotation is the entirety of Hilbert’s response to Poincaré. Though

he is right to say that there are two forms of induction—the finite, intuitive induction

of the metatheory and the transfinite, formal axiom of induction in the theory—

Hilbert fails to show how this differentiation defuses Poincaré’s objection.

In order to attempt to answer this question, I will look at two modern defenses of

Hilbert against the Poincaréan objection, by Marcus Giaquinto and Michael Detlefsen.

Giaquinto appears to misconstrue the heart of the objection, rendering his reply

insufficient. However, Detlefsen’s response appears effective in rebutting Poincaré—

the justification of the Axiom of Induction is, under this interpretation, non-circular.

However, despite being the best chance Hilbert has to respond to Poincaré, I will

argue that the response comes at too high a cost. The finite metamathematical proof

of the axiomatic consistency of the theory implictly invokes non-finitary induction

as support for one of his premises. Thus, Hilbert invokes a meta-metatheoretical
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statement that is non-finitary. This implicit appeal, coupled with Hilbert’s stated

goal of removing any doubt from all of the foundations of mathematics opens Hilbert

to a refocused Poincaréan objection. Thus, while Hilbert can reply to Poincaré’s first

objection, the goal of his project him to be vulnerable to a second-order Poincaréan

objection. First we turn to Giaquinto and then to Detlefsen.

3.3.1 Giaquinto’s Hilbert

Giaquinto’s reconstruction of Hilbert’s program in many ways agrees with the one pre-

sented here (summarized on page 74) in most ways, with the differences attributed to

different emphases. In particular, his account focuses on the distinction between fi-

nite and transfinite propositions and reasoning. A fundamental question for Giaquinto

becomes how apparently infinite laws can be recast in solely finitary methods. For

example, Giaquinto identifies what he calls “finitary general statements” such as [22,

p.146]:

c+ 1 = 1 + c (FG)

The problem with such statements, according to Giaquinto, is that they appear “to

involve a tacit reference to an infinite totality,” and thus there is reason to believe that

they should be excluded from a purely finitistic reasoning [22, p.147]. He addresses

this concern by arguing that the meaning of statements like FG can be understood

as a general disposition to assent to any instance of FG with a numeral in place of

‘c’. Giaquinto highlights that someone can have this disposition without having any

reference to an infinite totality or even having been exposed to an infinite object. The

point then, is that these sorts of statements are legitimated through this restricted

reading.

Proofs of these finitary general statements can be salvaged in a similar way for

Giaquinto—a proof of a finitary general statement like FG is considered legitimate
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whenever the ideal proof of FG gives an outline of how to finitarily prove any specific

instance of the generality. Giaquinto phrases this as “when we have a finitary proce-

dure for obtaining from the purported proof a finitary proof of any given instance of

the general proposition”[22, p.155].

The principle of induction in Hilbert’s theory is salvaged in the same way. Rather

than being a quantified principle of induction, Giaquinto considers it as a schema,

free-variable induction, or as a rule:

ϕ(1), ϕ(y) −→ ϕ(sy)

ϕ(y)

Note that this rule, when used in a proof of a generality, can be employed to

produce a finite proof of any instance of the rule. For instance, once shown that this

rule holds for some predicate ϕ, then for any given number c, one can construct a

proof that ϕ(c) by simply constructing a proof involving c − 1 instances of modus

ponens. We (the mathematically educated) recognize that the hypothetical person

cognizant of only finite quantities—the idealized person from above never introduced

to infinite totalities—is able to construct with this rule a proof for any instance ϕ(c).

From this, we, along with Giaquinto, conclude that the finite induction schema in the

metatheory is justified and well-grounded.

Giaquinto thinks that this distinction between the unquantified rule of induction

in the finite metatheory and the formalized quantified principle of induction resolves

the Poincaréan objection. However, he misconstrues the objection, taking the force

of the objection to be that the principle of induction is not accessible from the finite

point of view:

The argument is that induction on the natural numbers would be needed
in any proof of the consistency of a theory and yet induction is something
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that is not evident from the finitist point of view[22, p.162].

Giaquinto thinks his argument that the unquantified rule of induction is accept-

able from the finitist point of view rules out this objection. However, the Poincaréan

objection is not that induction fails to be finite; rather, the objection’s force lies in

the claim that Hilbert has presupposed induction—finite or infinite—in proving the

reliability of induction, either finite or infinite. A use of finitely acceptable induction

to demonstrate the consistency of a finitely acceptable form of induction is just as

illicit as using infinite induction to prove the acceptability of infinite induction. Sim-

ply showing that Hilbert has a finitistically acceptable form of induction at hand does

not answer the question.

Giaquinto’s position has painted himself into something of a corner, regarding

the actual petitio challenge. The emphasis on the finite/transfinite distinction means

that Giaquinto is committed to saying that ideal propositions are finitely accessible.

In particular, this commitment means that the induction axiom (which is included in

the consistency proof that Hilbert needs) is finitely accessible. But then, according

to his response to what he took to be Poincaré’s objection, so is the principle in

the meta-theory—indeed this property hews closely to Hilbert’s own language. But

then, Giaquinto construes Hilbert as using a finite principle of induction to prove the

consistency of a finitely accessible induction axiom. Regardless of the fact that one is

in the metatheory and one in the theory, it still remains prima facie circular, because

they share the same epistemic justification: finitism.

3.3.2 Detlefsen’s Hilbert

Michael Detlefsen’s reconstruction of Hilbert’s response to Poincaré’s example clearly

differentiates between the formal, transfinite principle in the theory and the con-

tentual, meta-theoretical principle of induction that is employed in its justification.
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In fact, Detlefsen’s argument that the use of contentual induction to non-circularly

justify the formal principle of induction succeeds in rebutting Poincaré. However,

though Hilbert is vindicated initially, I will argue that even Detlefsen’s reconstruc-

tion must admit a meta-metatheoretical statement that employs a use of transfinite

induction. This admission, coupled with the Hilbertian goal, again opens the door to

another petitio type objection.

Detlefsen’s argument hinges on a particular notion of circularity. Specifically, he

claims that an argument is circular whenever any reason for doubting the conclusion

“is an equally strong reason for doubting the premises or inferences which lead up to

the conclusion”[13, p.60]. Operating from this fundamental definition of circularity,

Detlefsen reconstructs Poincaré’s argument as having two premises:

1. Any reason for doubting the real-soundness of I’s use of induction is an equally

strong reason for doubting the truth (truth-preservingness) of any contentual

meta-mathematical induction that might be used to prove I’s real-soundness.

2. Any reason for doubting the real-soundness of I is an equally strong reason for

doubting the real-soundness of its use of induction.[13, p.60]. 19

Poincaré’s claim, according to Detlefsen, is a combination of these two premises;

the strategy to reject a Poincaréan objection is to critique both of these premises.

Detlefsen rejects the second premise because any ideal proof I that invokes the in-

duction axiom will also invoke other, non-inductive premises that one might also

doubt. One’s reason to doubt the non-inductive premises would also count as reason

to doubt the soundness of I as a whole, so there are some reasons for doubting the

real-soundness that are not doubting the use of induction. Thus premise two is not

true.

19‘I’ denotes any ideal proof that involves induction and “real-soundness” means that the trans-
mission of the epistemic finite status from the premises to the conclusion.
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However, this objection misses the mark on a number of fronts. First, it is

reliant on a particular notion of circularity, that could just as easily be reconstituted

in terms of reasons to believe rather than reasons to doubt. That is, if, instead of

Detlefsen’s account of circularity, we posit that an argument is circular whenever

reasons to believe the premises presuppose reasons to believe the conclusion, then

Detlefsen’s account of premise two and his objection can be turned away. His account

of circularity is contentious and lies at the heart of this objection.

Even granting his account of circularity, he still misconstrues Poincaré’s argument

in requiring premise two at all. For premise two to be needed, the conclusion of

Hilbert’s metatheoretical argument must be that ideal proof I is sound, since this is

the conclusion to be doubted in Detlefsen’s premise. Because the overall soundness of

a proof guarantees the soundness of each of its constituents, the use of induction in I

is real-sound. That being the case, there is then a parallel meta-theoretical argument

with the conclusion that the use of induction is sound. The Poincaréan can direct

his attack there. The objection need not accept Detlefsen’s second premise since it is

trivially true that doubting the conclusion of this parallel argument (that I’s use of

induction is real-sound) provides good reason to doubt the real-soundness of I’s use

of induction.

However, Detlefesen’s main response to the Poincaréan is an objection to the first

premise. His argument can be paraphrased as follows:

1. Finitary logic is a sub-theory of classical reasoning;

2. The closure of any set of propositions in finitary logic is a subset of the closure

of the same set of propositions within classical reasoning (from 1);

3. It is conceivable that a use of induction in classical reasoning would result in

an inconsistency, while the same use of induction in finitary logic would not;
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4. A reason to doubt the soundness of a use of induction in classical reasoning is

not necessarily a reason to doubt the soundness of the same use of induction in

finitary logic (from 2 and 3)[13, p.62].

Note that this argument is not at all vulnerable to a recasting of the account of

circularity, for if we use my suggested alternative above, we could similarly conclude

it is not the case that any reason to believe the premise (that finite induction is

sound) presupposes a reason to believe the conclusion (that induction within classical

reasoning is sound).

One problem with this argument is that it equivocates on a tension that arises

from Hilbert’s introduction of ideal elements to the theory. On the one hand, the ideal

axioms are introduced so that they can extend the results in the concrete theory.

The very reason that Hilbert introduces these ideal elements is because the set of

conclusions that can be drawn by the concrete theory does not reconstitute all of

arithmetic. Hilbert writes,

And analysis cannot be constructed by a concrete procedure of the sort
we have just given for elementary number theory. For we cannot come
close to exhausting the essence of analysis merely by using that sort of
contentual communication; rather, we need real, actual formulae for its
construction [31, 32].

On the other hand, these ideal principles must be included only in the theory—

they must in some way be translatable or verifiable by the concrete objects in the

theory. Hilbert wants to use the epistemic certainty of the finite, concrete language

to guarantee the certainty of the ideal part of the theory. Thus, the results derived

by use of the ideal axioms must be finite truths, or at the very least what Giaquinto

calls finitely general statements. The tension is that the axioms appear to need to go

beyond finite domains in order to achieve their purpose (reconstructing mathematics),

while at the same time must be restricted to finite conclusions in order to retain their
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epistemic certainty.

The way that Detlefsen’s response equivocates on this tension is that it hews close

to the one side of the tension—that the ideal axioms must introduce or go beyond

the purely finitary logic—in order to justify premise 3. What makes this possibility

conceivable is that the ideal propositions like the induction axiom extend the finite

system; if they did not do so, then the failure envisioned in premise 3 would not be

conceivable.

However, Detlefsen’s own ascription to an instrumentalist view of the ideal propositions—

roughly that they are a tool by which one can derive new finite truths even though the

tools themselves are not solely finite—requires that his ideal axioms and non-finitary

reasoning be finitarily sound in the finite domain. Detlefsen’s own position requires

that the ideal axioms must not result in any contradictory finite statements, which

means that it should not be conceivable that applications of induction in classical

logic lead to a contradiction while failing to lead to a contradiction in finitary logic.

This particular commitment is deeply seated in Detlefsen’s program.

However, the equivocation on this tension is a problem solely because of Detlef-

sen’s other commitments. One might not subscribe to Hilbertian instrumentalism

and have something like Giaquinto’s position, wherein ideal proofs are mere proof

schemata rather than at the same epistemic level as proofs themselves.20. There

would need be no equivocation and something like Detlefsen’s argument would apply.

However, this patch up job ignores a much deeper problem that is present in any

response that models itself on Hilbert’s while maintaining Hilbert’s stated goals.

20Detlefsen is committed to this latter position. Cf. Detlefsen [13, pp.54-57]
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3.4 Poincaré Redeemed

There is a general problem with any attempt at reconstructing Hilbert’s project in

an attempt to avoid Poincaré’s petitio objection. Any such attempt will necessarily

run afoul of Hilbert’s stated goal for the project: the dismissal of all questions of

legitimacy from the foundations of mathematics. First, I will provide some brief

evidence expounding on Hilbert’s goal and then show how any attempt to prove the

consistency of the ideal axioms (which include induction) non-circularly will result

in an implicit appeal to a full principle of induction. Such an appeal in the meta-

metatheory would not be damning to the project, save that Hilbert’s goal precludes

such an appeal.

Hilbert’s goal remained constant throughout the 1920s—the dismissal of the ques-

tion of doubting the foundations of mathematics. Early in his 1922 paper, he writes,

But that is what I require: in mathematical matters there should be in
principle no doubt; it should not be possible for half-truths or truths
of fundamentally different sorts to exist . . . I am of the opinion that the
foundations of mathematics are capable of full clarity and knowledge, and
that the problem of grounding our science is difficult but nevertheless
conclusively solvable [31, 1].

He begins the 1923 paper,

My investigations in the new grounding of mathematics have as their goal
nothing less than this: to eliminate once and for all, the general doubt
about the reliability of mathematical inference [30, 1].

He writes in 1925,

That, then, is the purpose of my theory. Its aim is to endow mathe-
matical method with the definitive reliability that the critical era of the
infinitesimal calculus did not achieve [28, p.370].

And finally, he writes in 1927,
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I pursue a significant goal, for I should like to eliminate once and for all
the questions regarding the foundations of mathematics, in the form in
which they are now posed, by turning every mathematical proposition
into a formula that can be concretely exhibited and strictly derived, thus
recasting mathematical definitions and inferences in such a way that they
are unshakable and yet provide an adequate picture of the whole science
[26, p.464].

The uniting theme in each of these quotations is that Hilbert aims to solidify not

just the consistency of his axioms, nor just the status of finitary arithmetic. His goal

is to establish the whole of mathematical reasoning. He aims to banish any and all

questions of justification and to demonstrate once and for all that it is impossible to

have reasonable doubt about the foundations of mathematics.

However, this goal will blunt any attempt to give a non-circular justification of

induction in Hilbert’s theory. Hilbert attempts a sketch of this proof in 1923; it

resembles in many ways his earlier attempts from 1904. Hilbert endeavors to show

that the formula 0 6= 0 is not derivable within the system. He proceeds by reductio,

where he first assumes a proof with a conclusion of 0 6= 0. Then he performs a number

of transformations on the proof to bring it into a logical normal form: he makes every

line have only one conclusion, eliminates all variables, and translates it into the object

language. From this “refined” proof, he then claims that each formula can be checked

“to determine whether it is ‘correct’ or ‘false’ in a certain sense that can be precisely

stated”[30, 29]. The pertinent quotation immediately follows:

Now, if the supposed proof were to satisfy all our requirements, then
clearly each formula of the proof would have to pass this test in turn.
Thus the end-formula 0 6= 0 would also have to be ‘correct’; but it is not
correct [30, 29].

Even setting aside the issue of the definition of ‘correct’, there remains a contro-

versial claim. Namely, Hilbert claims every proof can be transformed into this linear

structure and it can be determined if the formulae are correct. But the fact that this
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claim is true for every proof is based on induction. Its truth is guaranteed by the

realization that for any given proof P , with n-many formulas, we are able to check

that the first formula is correct, that the second formula is correct, and so on up to

the nth formula. That such a procedure is possible for every proof—for all finite

proofs— is then merely an inductive claim. This time, the application of induction

is at the meta-metatheoretical level.

Giaquinto has a similar problem in his account. He argues that Hilbert has

finitary general statements, and that these statements amount to a general disposi-

tion to assent to specific instances. Similarly induction, both theoretical and meta-

theoretical, becomes an unquantified rule. Giaquinto’s argument that this rule can be

generalized to provide a finite proof of any particular instance, however, also invokes

an implicit inductive inference. Giaquinto gives an example of how to employ the

rule to create a finite proof, and on providing such an example claims, “Obviously,

the prescription can be generalized to obtain a finitary proof of any instance of ϕ(n)”

[22, p.155] What he claims is true—we can generalize his procedure and thereby have

a finite procedure for producing finite proofs from the finite induction schema. How-

ever, this claim itself is metatheoretical (and in this case meta-metatheoretical since

Hilbert will employ this induction schema in the metatheory). That we know such a

procedure exists is only possible via appeal to a transfinite principle that allows us

to conclude that proofs for all numbers can be generated from this rule.

Finally, suppose that we grant a form of Detlefsen’s reconstruction. That is,

suppose that there is a proof in the finite metatheory of the ideal transfinite principle

of induction in the theory. We could even concede that this derivation in the meta-

theory of the theory’s consistency is non-circular. However, this proof would have to

show that for every proof in the theory, ‘0 6= 0’ is not its conclusion. This amounts

to a procedure in the meta-theory of how to show, given a purported proof of ‘0 6= 0’,

that it is not actually a proof, that it fails to obey the rules laid down in the theory.
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Regardless of how this proof proceeds, it must be that it is applicable to every proof

in the theory that purports to show a contradiction. However, the claim that this

procedure will work in every case is, again, another meta-metatheoretical claim. Such

a procedure would have to be defined recursively in the finite metatheory, along the

lines of some rule formulation as in Giaquinto. However, because the procedure is

recursively defined, the only way to justify the universal meta-metatheoretic claim

would be via induction. In order to know that the proof procedure in the metatheory

does, in fact, prove the consistency of the theory, one would have to use, either

implicitly or explicitly, induction in the meta-metatheory.

There is good reason to think this problem is endemic. Any consistency proof

that purports to increase the epistemic strength of the axioms must use a principle of

induction that is at least as weak as the principle within the theory so that the epis-

temic status is improved. If the metatheoretical principle of induction is not strictly

weaker than the theoretical principle, then it is difficult to see how the epistemic

security of the theory has been improved.

However, if the metatheory employs a weaker principle of induction than the

transfinite principle in the theory, the question arises as to how it is known that the

given derivation of consistency is, in fact, a good one. Any explanation of this sort

will necessarily appeal to a higher metatheory that employs a stronger principle of

induction.

It is Hilbert’s stated goal of dismissing all of the questions of doubt that makes

this appeal unavailable to the Hilbertian. The explication of all the distinctions

Hilbert has made and all the progress seemingly gained by the formalization wash

away in the face of such an appeal; appealing to a higher level of induction once

again makes the project circular. Poincaré’s objection, refocused and made meta-

metatheoretical, arises again.

In this way, the problem with epistemic justification resembles a Tarski-style
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regress of metalanguages. The only way to ascertain that the epistemic justification

of a meta-theoretical proof is correct is by advancing to a yet higher metatheory.

A Hilbertian reply that such a justification is not needed because finitary rea-

soning is unquestionable appears dogmatic. Any attempt by the Hilbertian to justify

finitary reasoning will lead to a regress, so he must simply accept the epistemic secu-

rity of finitism. Unless this position is intuitively appealing, the Hilbertian has little

to offer as argument for his position.
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Chapter 4

Poincare against the Logicists

Poincare’s objections to foundationalism in the early 20th century failed to differenti-

ate between Hilbert and bona fide logicists like Frege, Russell, or Dedekind. Moreover,

his critiques openly mock the work of those to whom he is objecting, even going so

far as to say regarding the petitio objection for the logicists, “I have not seen it in the

pages I have read, but I do not know whether I should find it in the three hundred

pages they have written that I have no wish to read.”[48, 183].

Among these objections, the petitio objection stands out. Recall that this objec-

tion amounts to an accusation of begging the question by employing induction in the

derivation of mathematical axioms, one of which is induction itself. In chapter 3 we

saw how the original petitio was effective against early Hilbert and how it retained its

force in a revised form for the later Hilbert. In this chapter, I will show 1) why the

original petitio is irrelevant to the logicist; 2) give a revised, sophisticated version of

the petitio; 3) argue, according to Goldfarb [23], why even this sophisticated version

fails to touch the logicist.

It should be noted that Goldfarb’s argument rests upon a particular interpretation

of the logicists’ project. More precisely, it relies on a certain interpretation of the

logicists’ view of logic—that there was no conception of a metatheory in their writings.
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Though I find this view compelling, whether or not one objects to it will not affect the

purpose of the current chapter. The goal is twofold: first, to show that the logicist is

able to wriggle free of Poincaré’s grasp only by lights of his peculiar view of logic as

inescapably universal—to deny the existence of a metatheory—thereby preventing a

revision of the original petitio to the sophisticated petitio; and second, to show that

the neo-logicist cannot respond to Poincaré in the same manner as the logicist. If one

disagrees with Goldfarb’s interpretation, the sophisticated petitio remains a viable

objection, both for the logicist and the neo-logicist.

One final terminological note. For this chapter, I will operate under the as-

sumption that Hilbert, regardless of which time period one is talking about, is not a

logicist. So, when I speak of the “logicist”, I do not mean to include within this group

Hilbert. Logicists are those who generally followed a Fregean framework to provide

an undoubtable basis in logic for mathematics. Hilbert abandoned this project early

to pursue a finitist method of removing doubt from mathematics.

4.1 Original Petitio and the Logicist

We have seen the original petitio objection previously in reply to early Hilbert (§3.1.3).

In it, Poincaré accuses Hilbert of presupposing a principle of induction in his proof of

the consistency of induction with the other axioms and given rules of inference. Any

justification or proof of such consistency could only be made via an invocation of the

principle of induction. As Goldfarb puts it,

The clearest [petitio] is directed against the notion that mathematical
induction is not a principle with content, but is just an implicit definition
of the natural numbers. Poincaré notes that such a definition must be
justified by showing that it does not lead to contradiction; yet any such
demonstration would have to rely on mathematical induction [23, 64].
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Having to provide a demonstration that given axioms—or implicit definitions—do

not lead to a contradiction is a uniquely Hilbertian requirement. The logicist does not

give axioms and then guarantee the safety of reasoning with them via a consistency

proof. The origin of this difference stems from their underlying assumptions about

existence and consistency. We saw earlier that for Hilbert, mathematical consistency

guaranteed the existence of the items in question. Recall:

. . . if the arbitrarily given axioms do not contradict one another with all
their consequences, then they are true and the things defined by the ax-
ioms exist. This is for me the criterion of truth and existence [20, pp.39-
40].

However, this is exactly contrary to the position that Frege and the logicists

adopt, wherein the existence of a mathematical object is what guarantees its consis-

tency. Frege writes,

From the truth of the axioms it follows that they do not contradict one an-
other. There is therefore no need for a further proof. The definitions too,
must not contradict one another. If they do, they are faulty. The prin-
ciples of definition must be such that if we follow them no contradiction
can appear[20, p.37].

The fundamental disagreement between logicists and Hilbert is the direction of

implication between consistency and existence. Hilbert believes that consistency is

the more basic of the two notions, and therefore a proof of the consistency of a set of

axioms guarantees their existence; Frege and the logicist hold that the truth of the

axioms (their truth means that they exist as axioms) is the more fundamental notion

and that it implies that they are consistent. As Goldfarb writes,

Frege and Russell (and later on, Couturat) insist that existence is not
proved by consistency; rather, consistency is vouchsafed by showing existence.[23,
65]

This fundamental difference makes Hilbert vulnerable to the original petitio and

the logicists not. Hilbert must somehow show that the axioms he gives for arithmetic
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are consistent because he has no notion of truth of the axioms. There is no way in

which Hilbert considers his axioms to be “true”. For instance, the parallel postulate

could be laid down or not, with each option resulting in a different geometry. But one

geometry is not the “true” geometry. Indeed, we saw in the previous chapter that he

assiduously avoids even giving his axioms even any meaning so that there is only a

purely syntactic axiomatic method as the foundation of mathematics.

However, Frege and the logicists have a fundamentally different conception of

axioms. The axioms that they give—the basic laws—have to be true in order to

guarantee their consistency. Thus, because they are true as given, they are always

interpreted and never the syntactic axioms that Hilbert gives. There is no syntactic

demonstration of the consistency of the axioms, and thus no application of mathe-

matical induction. The original petitio fails to gain any bite.1

4.2 Sophisticated Petitio

Poincaré makes a more refined and subtle attack on the logicist program which, fol-

lowing Goldfarb, I will call the sophisticated petitio. Similar to the original version,

the sophisticated petitio accuses the logicist of circularity. However, rather than ar-

guing that the induction is implicitly used in a proof of consistency, it argues that

the logicist presupposes induction in establishing the system within which the reduc-

tion of mathematics to logic will take place. Poincaré actually makes this argument

against Russell’s theory of types initially, saying,

. . . the theory of types is incomprehensible, if we do not suppose the theory
of ordinal numbers already established. How will it then be possible to
base the theory of ordinal numbers on that of types [44, p.52]?

1Of course, it should be noted that the axioms chosen by Frege were, in fact, not consistent as
shown by Russell’s Paradox. This result should be seen, then, as a proof that Basic Law V is not
true. There may be very good reasons to doubt the logicist here, but I simply want to show that
the original petitio is not one of them.
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Poincaré alleges that Russell presupposes a theory of ordinal numbers to differ-

entiate between orders of propositions with the goal of structurally restricting propo-

sitions of order n to refer only to propositions of order n−1. Russell’s theory of types

presupposes a theory of number even to classify what the order of a proposition is; the

presupposition occurs in the formation rules. For Poincaré’s temporal understanding

of mathematics and intuition, the presupposition happens before the formal system of

the theory of types is established, and there voids subsequent epistemic simplification.

This objection is generalizable beyond Russell’s theory of types to any logicist-

type project. Any proof of the reducibility of mathematics to logic will have to give

a derivation of the ordinal number theory. This derivation will necessarily employ

a formal system of logic. In defining this formal system of logic, the logicist must

use induction to define the notions of formula and derivation recursively. Thus, the

logicist relies on mathematical induction for the formation rules of the logical system,

within which he intends to derive the principle of induction. He has reasoned in a

circle.

Important to note about this sophisticated version is that it makes a funda-

mentally meta-theoretical claim. While the original petitio argues from a theoretical

standpoint(from within the formal system), the sophisticated petitio argues from a

metatheoretical standpoint(from outwith the formal system). The former claims that

any consistency proof within the system will employ induction; the latter claims that

the formation rules for the formal system of logic presuppose induction. The origi-

nal version is effective against the early Hilbert because his consistency proofs occur

within his system (see §3.1.2). However, it fails to touch the logicist, because the

truth of his fundamental principles guarantees consistency, not a positive proof of

that consistency. The absence of a consistency proof within the system means that

there is no possibility of an implicit application of induction, nor a presupposition of

number. The original petitio fails, but the status of the sophisticated version remains
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in question.

Goldfarb provides a defense for the logicists against this sophisticated petitio

by invoking the logicists’ universalist conception of logic to blunt Poincaré’s attack

before it starts. The defense says roughly that because there is no meta-theoretical

perspective from which to mount the objection, Poincaré’s sophisticated objection is

blocked.

For Poincaré, the objection is made “prior to” the formal system being in place.

This sort of formulation should be no surprise, given Poincaré’s emphasis on temporal

intuition(see 2.2.2). For Poincaré, there is sense in speaking about a time prior to

a given formal system. Therefore, he argues that in laying out the rules for any

formal system requires a recursive definition and therefore presupposes the principle

of induction. Establishing rules for a formal system brings into existence that formal

system, for Poincaré. Any justification of this principle from within the system is

circular.

However, this objection is not one that the logicist needs to address. It is mounted

from a metatheoretical standpoint; it comes prior to the formal system of logic. For

the logicist, there is no possibility of such a standpoint; there is, for the logicist, no

notion of a metatheory. The conception of logic is all-encompassing insofar as logic

is not merely a formal system with funny looking symbols and complicated rules, but

rather the space within which any and all reasoning takes place [23, 69]. Logic cannot

be decided upon and set forth in formation rules. There is no notion of “prior to” as

there is for Poincaré; for the logicists, logic exists outside the framework of time. It is

eternal and unchanging, instead of being summoned into being by the formation rules.

Logic simply exists and argumentation happens underneath its umbrella. There is no

way to get outside of logic and no Archimedean standpoint from which Poincaré can

launch his attack.
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More than being a potent objection, Poincaré’s disagreement with the logicist

highlights a fundamental difference between the two conceptions of mathematics.

Poincaré’s psychologism held that psychological principles are prior to understanding

the formal system of mathematics and therefore also epistemically prior (§2.1.3).

Thus, the formal system itself trades on this intuitive basis.

However, for Frege, no intuition lies at the bottom of mathematics. Logic exists

regardless of our ability to understand it and psychological elements have no place

in the epistemic or ontological justification of mathematics. Similarly, formation

rules of the system—definitions of derivations, syntax rules, etc.—do not have any

bearing on justifying the system. They themselves do not need justification nor

examination. They exist merely for our benefit in coming to understand the structure

of the system. The rules are similar in kind to laws of physics, which are descriptive

rather than prescriptive. These rules may be necessary for any individual to come to

understand logic, but this necessity is only a psychological one. Unlike for Poincaré,

this psychological necessity fails to have any justificatory role for the logicists. The

necessity of formation rules has the same epistemic status as the constancy of inkblots

on the paper on which we do mathematics. It is necessary that inkblots stay constant

throughout our proofs—that they do not jump around the page to change what we

had written as an ‘x’ to a ‘y’ or worse to nonsense. However, this necessity plays no

role whatsoever in the epistemic status of mathematics. Frege says explicitly,

A delightful example of the way in which even mathematicians can confuse
the grounds of proof with the mental or physical conditions to be satisfied
if the proof is to be given is to be found in E. Schŕ’oder. Under the heading
“Special Axiom” he produces the following: “The principle I have in mind
might well be called the Axiom of Symbolic Stability. It guarantees us
that throughout all our arguments and deductions the symbols remain
constant in our memory—or preferably on paper.”[18, p.viii]
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While it is true that symbols must be stable—that their meanings do not change

constantly—it is merely a concomitant of proof and not the grounds on which the

proof is given. Similarly, the formation rules of logic are required for us to understand

logic, but they do not play a role in forming the system.

With this understanding of the formation rules, it becomes easier to understand

Frege’s belief in the truth of the axioms prior to their consistency. Of course the

rules of logic are consistent because logic is the universal language of thought and

argument. The rules by which logic operate simply exist and therefore are consistent.

There will be a question as to whether a given set of axioms is consistent only insofar

as there is a question as to whether that given set of axioms accurately reflects the

real axioms for logic.

These two different conceptions of logic—Poincaré’s and the logicists’—also man-

ifest themselves in the notion of the justification of theorems. For Poincaré, derivation

can be defined recursively, thereby making sense of the claim that a proposition has

been derived. Roughly, pick which rules of inference are allowed and then state that

a sequence of (n+ 1) many proposition is a derivation if and only if the first n propo-

sitions are a derivation and the (n + 1)th proposition in the sequence results from

the axioms, some subset of the first n lines, and the proper application of the rules

of inference. For Poincaré, a given statement is provable if and only if there exists a

derivation with that statement as its last proposition. The statement that sentences

are in general provable only if there is a derivation of them is a metatheoretic one.

For Frege and the logicists, appealing to the notion of a derivation in order to

determine provability is not possible. There is no assertion to be made that a given

sentence is a theorem. The justification of a theorem is the explicit laying out of

the derivation. As Goldfarb says, “To give the ultimate basis for a proposition is

to give the actual proof inside the system, starting from first principles; that is, it

is to assert the proposition with its ground, not to assert the metaproposition ’this
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sentence is a theorem.”’[23, p.69] The syntactic checking of a proof—making sure

we have applied the rules correctly—is not a systematic notion for Frege, but rather

another concomitant of logical knowledge. When doing logic, we must check to make

sure proofs follow the rules correctly, at which point we may say that a given proof

is indeed valid. But this checking is only something we must do because of our

propensity to make mistakes; it is not epistemically necessary. It is something we

have to do only out of psychological necessity, just like our need to write down proofs

because we cannot hold their entireties in our heads at once. Our inability to work a

proof without aid of paper and pencil does not make paper and pencils epistemically

necessary to mathematics. Our need to check proofs does not make such syntactic

statements such as “This is a proof,” necessary to logic, nor does it legitimize it as an

actual statement in the language of logic. Instead, it’s something informal meant to

indicate that no human mistakes were made. There is, for the logicist, no formalized

notion of a metatheory nor an uninterpreted system—there is no syntax absent of

semantics.

Poincaré’s critique, then, is defused before it gets off the ground. Metatheoretic

statements are impossible for the logicist, and Poincaré’s attack is launched from a

metatheoretical standpoint. As Goldfarb notes, because there is no metatheoretic

standpoint from which Poincaré’s argument can take hold, the sophisticated version

fails to be formulable.

Poincaré’s petitio objection to the logicist seems to not be a legitimate objection

that engages with the logicist, but rather a natural consequence of his fundamental

ideas. Similarly, the logicists’ reply is not one that shows why Poincaré’s objection

should be rejected, but rather a demonstration of how their conception of logic does

not cede any ground to Poincaré’s objection. The problem becomes that there is

nothing more for either side to say. The Poincaréan finds this objection to completely

convincing, while the logicist thinks no more needs to be said.
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Poincaré has made a number of objections to the logicist, of which we have

focused on two: the original and sophisticated petitio. Both made accusations of pre-

supposing induction: the former within the system and the latter outwith. However,

the universality of the logicist’s conception of logic allowed both to be turned back

and a stalemate reached. The always interpreted, non-syntactic nature of his concep-

tion of logic allows the logicist to turn away the original petitio and the absence of a

metatheory blunts the sophisticated.

For our purposes, this fact is significant because the neo-logicist cannot invoke

this universal conception of logic. Besides ignoring more than a century’s advance in

proof theory and the like, the neo-logicist must make one significant metatheoretical

claim. Namely, he must claim that his formulation of the rules in the proof of Frege’s

theorem—including Hume’s principle—does not meet the same fate as Frege’s set of

axioms; the neo-logicist must show that they are consistent and not susceptible to

another “Russellian” paradox. Once they move away from this universal conception,

it becomes natural to again raise a Poincaréan objection. It is to this topic that we

turn in the next chapter.
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Chapter 5

Neo-Logicist

The current chapter looks to revive a Poincaréan petitio objection by refocusing it

against the neo-logicist. Such a refocusing becomes relevant because neo-logicism has

a goal of reviving Fregean approaches to epistemically grounding mathematics while

avoiding the antinomies generated by Frege’s original attempt.

Though there are many competing conceptions of Neo-logicism, I will focus on

the version put forth by Bob Hale and Crispin Wright.1 This choice is made because

the popularity of the view marks it as the de facto neo-logicist position. The plethora

of responses and objections allows the Poincaréan objection to be located in the

geography of other objections, demonstrating that two versions of the petitio principii

objection can be raised—more specifically, the objection can be made in two different

places—both resembling pre-existing objections.

The chapter shall proceed as follows. Section 5.1 will lay out the project of the

Neo-logicist, focusing in detail on those areas vulnerable to a Poincaréan objection.

Section 5.2 will examine the stated goals of the neo-logicist in comparison to the

original goals established by Frege. The final section will examine two distinct places

1For alternative constructions see Tennant ([58], [59], [60]), Fine ([16]), Demopoulos ([11], [12]),
Hodes ([35], [33], [34]), Zalta ([68], [67]) or Linsky and Zalta ([37])

99



where a Poincaréan objection threatens—the formation of the formal system and the

consistency proof of Hume’s Principle with second order logic. These two forms will be

compared and contrasted with existing objections put forth by Shapiro ([54], [55]) and

by a host of people under the umbrella of the so-called “Bad Company” objections.

Bad company objections are so-called because they accuse Hume’s Principle of too

closely resembling principles that lead to contradiction, for example, Basic Law V.

Objections of this sort have been voiced by Field [15] and Boolos [5], among others.

5.1 Neo-Logicism: Reviving Frege

The project of neo-logicism is in one sense easy to summarize. Let Hume’s Principle

(HP) to be the following:

(∀F )(∀G)[(Nx : Fx = Nx : Gx)↔ (F1− 1G)]2 (HP)

Neo-logicism is a proof of Frege’s theorem,

FT From second order logic and Hume’s Principle, Peano’s Postulates follow,

with the assumption of a special epistemic status for second order logic and HP.

Because of FT, the neo-logicist concludes that mathematics holds the same epistemic

status as logic and HP.

However, like all sweeping generalizations, this one obliterates intricate specifics.

In particular, it ignores several extensive philosophical theses that the neo-logicist

must adopt. The following will give a brief historical background of the failure of the

original logicist program, thereby motivating the neo-logicists’ replacement of Basic

2In giving the formalizations of these principles, I will follow the presentation of MacBride [38].
The formalized version of the principle warrants a brief description of the symbols. ‘Nx’ is an
operator on the extensions of concepts, so ‘Nx : Fx’ can be read as ‘the Number of xs that are
F ’. Similarly, ‘1− 1’ is a relation between concepts, so ‘F1− 1G’ should be read as ‘there exists a
one-to-one correspondence between F and G’
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Law V by HP; spell out the commitments of Hale and Wright’s position; and finally

examine the question of HP’s consistency with second order logic. For this third

section, the chapter will sketch George Boolos’s proof of the equiconsistency of HP

and second order logic with analysis [3].

5.1.1 The Failure of Frege and Basic Law V

Frege initially introduces what came to be called Hume’s Principle as a definition for

number in the Grundlagen. The first attempt in §§62-4 amounts to Hume’s Principle:

However, as MacBride notes, this proposal fails to address the so-called ‘Julius

Caesar’ problem, wherein the definition of number via HP—though adequate to in-

troduce numbers via Frege’s Theorem—does not give an acceptable criterion for de-

termining what is and what is not a number. In his analogous case of the direction

of parallel lines, Frege highlights the difficulty thus:

In the proposition “the direction of a is identical with the direction of b”
the direction of a plays the part of an object, and our definition affords
us a means of recognizing this object as the same again, in case it should
happen to crop up in some other guise, say as the direction of b. But this
means does not provide for all cases. It will not, for instance, decide for
us whether England is the same as the direction of the Earth’s axis. [19,
§66]. 3

Returning to the numerical case, the problem is that one is able to determine

whether or not a given object b is the same number as a only if it is presented in

a certain way: HP provides a way to determine if the number of F s is the same as

the number of Gs, but not a way to determine if the number of F s is the same as

Julius Caesar. One is only able to evaluate the equality of numbers if they are both

presented as the number of a concept.

Seemingly in light of this problem, Frege gives a revised definition of number in

3Heck [25] has a transposition of this quotation into the context of HP.
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§§68-9. He writes,

My definition is therefore as follows: the Number which belongs to the
concept F is the extension of the concept “equal to the concept F.” [19,
§68]

Frege now reformulates Hume’s Principle into what will be generalized into Basic

Law V in the Grundgesetze:

But now the proposition: the extension of the concept “equal to the con-
cept F” is identical with the extension of the concept “equal to the concept
G” is true if and only if the proposition “the same number belongs to the
concept F as to the concept G” is also true.[19, §69]4

This reformulation of the definition hopes to avoid the Julius Caesar problem

by defining numbers as the extensions of concepts, which excludes Julius Caesar as

a potential number, since he is not allegedly an extension of a concept but rather a

concrete object.5 However, avoiding the Julius Caesar problem comes at a high cost,

for when codified into Basic Law V, this revised definition enables Russell’s paradox

to rear its head.

Basic Law V states that the objects falling under one concept are the same as the

objects falling under another concept if and only if the two concepts are co-extensive.

Symbolically—following MacBride [38]—this is written:

(∀F )(∀G)[(Ext : Fx = Ext : Gx)↔ (Fx↔ Gx)] (Basic Law V)

Taking this formulation, Russell defines the predicate Rx as ‘x is a predicate

which cannot be predicated of itself’, and claimed that, “From each answer its op-

posite follows,” for if R is predicated of itself, then it should not be so, and if it is

not predicated of itself, then it should be so[51]. This formulation, however, is not

4Here, the translation has used ‘equal’, but a more accurate translation may be ‘equinumerous’.
5Note that there is a question as to whether or not this step actually solves the problem or merely

pushes it back one more step.
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formalizable in Frege’s system. Frege took this ill-formed objection and produced a

formal argument within the system.

First, Frege proves that every concept had an extension in his system:

BLV = (∀F )(∀G)[(Ext : F = Ext : G)↔ (Fx↔ Gx)]

BLV ` {x : Fx} = {x : Fx} ↔ ∀x (Fx↔ Fx)

` ∀x (Fx↔ Fx)

BLV ` {x : Fx} = {x : Fx}

BLV ` ∃y (y = {x : Fx})

Now, from the comprehension principle(CP)—∃F∀Z (Fx↔ Xx), where Xx is

any concept not involving F—Frege defined the Russell set:

Rx↔ ∃F (x = {y : Fy} ∧ ¬Fx) (Russell Set)

This is a formalization of the Russell paradox that says that x is in the Russell set

if and only if x is the extension of some concept F and x does not fall under that

concept. The paradox arises when one considers r = {x : Rx}, that is the extension
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of the Russell set itself.

Assume Rr

iff ∃F (r = {x : Fx} ∧ ¬Fr)

iff r = {x : F0x} ∧ ¬F0r

but r = {x : Rx}

so {x : F0x} = {x : Rx}

applying BLV from left to right

∀x (F0x↔ Rx)

F0r ↔ Rr

¬F0r

¬Rr

Therefore, BLV, CP, Rrvdash¬Rr. Thus, BLV, CP ` Rr → ¬Rr. Finally, BLF,

CP` ¬Rr.

Now assume ¬Rr

iff ¬∃F (r = {x : Fx} ∧ Fr)

iff ∀¬F (r = {x : Fx} ∧ Fr)

iff ∀F (r 6= {x : Fx} ∨ Fr)

iff ∀F (r = {x : Fx} → Rr)

iff (r = {x : Rx} → Rr)

By the definition of r, Rr
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Therefore, BLV, CP vdashRr. BLV and CP together jointly prove Rr ∧ ¬Rr,

and we have the contradiction.

The historical importance of this story is three-fold. First, Russell’s paradox

caused Frege to ultimately forsake his project of providing a derivation of mathe-

matics from logic, thereby solidifying the epistemic ground mathematics stood upon.

Frege despaired the possibility of demonstrating that mathematics could be derived

from logic alone, thereby inheriting the epistemic strength of logic. The neo-logicist

position can be seen as an attempt to avoid this despair and resurrect at least part of

Frege’s program by returning to Frege’s initial attempt at defining number via HP.

Second, the only necessary application of Basic Law V in Frege’s derivation is the

derivation of HP. That is, Basic Law V is not used essentially in Frege’s derivation

of mathematics (see Heck [25]), except for proving HP. Once Frege has HP in hand,

he is able to continue with the derivation of Peano’s Postulates.6 Important to note

here is that whereas Basic Law V conjoined with second order logic is inconsistent,

HP conjoined with second order logic is consistent : thus, the neo-logicist strategy of

resurrecting Frege’s project by replacing Basic Law V with HP.7

Third, the introduction of Basic Law V was an attempt to avoid the Julius

Caesar problem arising from a defining numbers via HP alone. Thus, if the neo-

logicist replaces Basic Law V with HP, they need to supply an answer to the Julius

Caesar problem that is both adequate to dismiss the objection as well as not run

afoul of contradiction.

6More precisely, he is able to derive Fregean Arithmetic, within which Peano’s postulates can be
interpreted.

7I will return to this issue in the section 5.1.3.
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5.1.2 The Neo-Logicist Project

Fraser MacBride identifies three distinct bodies of doctrine that the neo-logicist is

committed to in order to make the proof of Frege’s Theorem achieve the epistemic

goals of the project:8

1. a general conception of language and reality;

2. a particular method for introducing novel expressions into language;

3. a specific understanding of the scope of logic[38, p. 107].9

Language and Reality

The neo-logicist’s conception of the connection between language and reality is wholly

different from the standardly held notion. An ordinary interpretation of the relation-

ship holds that reality is distinct from language and is independently determined.

However, for the neo-logicist, language and reality are inextricably and necessarily

entwined. As MacBride says, the two “are so related that, if we speak truly, the struc-

ture of reality inevitably mirrors the contours of our speech” [38, p. 108]. Therefore,

any true statements cannot fail to reflect the way the world actually is.

MacBride further subdivides this doctrine into three components—Syntactic De-

cisiveness, Referential Minimalism, and Linguistic Priority [38, p.108].10 The result

8These goals will be examined in detail in section 5.2.
9The following discussion is based on MacBride[38, pp.108-115]. My presentation is made with

an eye to highlighting features of the last two doctrines—the use of abstraction principles and the
status of second-order logic—so that objections in §5.3 can be properly placed. As such, my analysis
will for the sake of space pass quickly over some distinctions drawn out by MacBride.

10These three are described respectively:
Syntactic Decisiveness: if an expression exhibits the characteristic syntactic features of a singular
term, then that fact decisively determines that the expression in question has the semantic function
of a singular term (reference).
Referential Minimalism: the mere fact that a referring expression figures in a true (extensional)
atomic sentence determines that there is an item in the world to respond to the referential probing
of that expression.
Linguistic Priority : linguistic categories are prior to ontological ones; an item belongs to the category
of objects if it is possible that a singular term refer to it. [38, p.108]
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of this doctrine is that “the syntactic form of our (true) sentences cannot deceive us;

reality cannot fail to include the objects and concepts which the sentences appar-

ently describe” [38, p. 108]. By adopting this position, the neo-logicist argues in the

following manner:

1. Ordinary mathematical practice can be replicated using numerical terms.

2. These numerical terms are parts of true sentences.

3. The Numerical terms have syntactic features characteristic of singular terms,
and therefore can be treated as referential in the same way as singular terms.
(Syntactic Decisiveness)

4. Because they can be treated (semantically) like singular terms and are parts of
true sentences, these numerical terms refer to something in the world. (Refer-
ential Minimalism)

5. That “something in the world” to which they refer is an object. (Linguistic
Priority)

6. Terms that exhibit the same pattern of use refer to the same objects. (Meaning
Supervenes on Use)

7. Therefore, ordinary mathematical objects exist as objects in the world.11

The rough synopsis of this argument is that the reconstructed mathematical practice

has certain properties that guarantee that the terms refer to existent objects in the

world. The argument proceeds from a purely syntactic basis to a claim about the

existence of objects in the world. It moves from a statement about the syntactic

features of numerical terms to the substantive claim that ordinary numbers exist as

objects in the world. Obviously, each of these theses must be defended in detail to

complete the neo-logicist project. We will not do so here, because it would take us

from our purpose. What is relevant is how the neo-logicist introduces the syntactic

terms used in the reconstruction of mathematical practice: the method of abstraction.

11Drawn from Macbride [38, pp.108-9]
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Abstraction Principles

For the neo-logicist, abstraction principles are the mechanism by which one is able to

introduce new terms to a language solely via reference to pre-existing and understood

terms. It is the method by which one is able to fix the use and meaning of new

operators in a language, bootstrapping from existing resources. For example, in a

language that already contains the terms (‘α1’, . . . , ‘αk’) and some sort of equivalence

relation (‘≈’) that holds between those terms, we can introduce a new operator (‘Σ’)

that goes from concepts to objects via the following general principle AP:

(∀αϕ)(∀ακ)[(Σ(αϕ) = Σ(αϕ))↔ (αϕ ≈ ακ)]
12 (AP)

The neo-logicist is committed to two claims about principles of the form of AP:

semantic and syntactic novelty. The former states that the method of abstraction

introduces genuinely new operators to the language that retain the syntactic features

of singular terms, while the latter states that the new terms, provided they actually

refer, refer to items to which the αis do not refer.13

Notice that HP is an instance of AP obtained by replacing ‘Σ’ with ‘Nx’, ‘αϕ’ and

‘ακ’ with ‘Fx’ and ‘Gx’ respectively, and the ‘≈’ with the one-to-one relation ‘1-1’:

(∀F )(∀G)[(Nx : Fx) = Nx : Gx)↔ (Fx1− 1Gx)]14

12Taken from MacBride [38, p. 110]
13MacBride also identifies Referential Realism as a principle to which the neo-logicist is dedicated

[38, p. 112]. I omit it here because the potential issues surrounding this position would take me far
a field from the objections I wish to examine.

14Note that the language within which ‘Fx’ and ‘Gx’ are terms is second order logic. The notion
of one-to-one correspondence can be spelled out in a purely second-order logic manner. Rossberg
and Ebert [50] give the full statement:

∀F∀G [Nx : Fx = Nx : Gx↔ ∃R (∀x [Fx ⊃ ∃y (Gy ∧Rxy ∧
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∀z (Gz ∧Rxz ⊃ z = y) ∧ ∀y [Gy ⊃ ∃x (Fx ∧Rxy ∧ ∀z (Fz∧ ⊃ z = x))]. (HP)

Thus, HP inherits all of the properties ascribed to generic abstraction principles.

In particular, the stipulation of HP gives numerical terms the syntactic properties

of singular terms, which is required for the argument in §5.1.2. Thus, via HP, the

neo-logicist claims that one can advance from our knowledge of second-order logic to

knowledge of new operators ‘Nx’. The patterns of use of the standard mathematical

practices mirror the uses of these new operators, and due to their inheritance of the

syntactic characteristics of singular terms, the new operators refer to bona fide objects

in the world. Thus, via HP and knowledge of second-order logic, one may advance to

knowledge of numbers as objects in the world.

Scope of Logic

The final commitment of the neo-logicist is to hold that second-order logic is ba-

sically understood and epistemically fundamental. MacBride identifies this as the

Second-Order Logic is Logic commitment, wherein the neo-logicist is committed to

the existence of a class of inferences involving quantification over first-order notions

like property and relation whose validity is transparent to us [38, p. 113]. In other

words, the neo-logicist is committed to the claim that we have special epistemic abili-

ties to recognize the validity of second-order patterns of inferences, not just first-order

patterns.

The reason why such a commitment is necessary is clear: the neo-logicist requires

some ability to determine when the right-hand side of HP is satisfied (recall that one-

to-oneness is representable only in second-order logic). Only through this special

ability are we able to gain knowledge of the right-hand side of HP and thereby gain
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knowledge of number on the left-hand side. This ability to recognize the truth of

second-order statements allows the neo-logicist to claim immediate knowledge of the

truth of the following:15

(x : x 6= x)1− 1(x : x 6= x) (A)

This statement—the things that fall under the predicate ‘is not identical with it-

self’ can be put in one to one correspondence with that selfsame collection of objects—

is an instance of the right-hand side of HP, meaning that the following is true by HP:

(Nx : x 6= x) = (Nx : x 6= x) (B)

This equation essentially “says” that the number of things that are non-identical is

equal to the number of things that are non-identical. Then, since it is both true and

has the syntactically relevant features (they are the same as singular objects), this

means that there is something in the world to which ‘Nx : x 6= x’ refers, since our

true linguistic uses cannot fail but to refer. Because there is such a thing, we are

permitted to existentially quantify and say:

∃y (y = Nx(x 6= x)) (C)

This statement “says” that there exists something that is identical with the number

of non-identical things; it “says” that zero exists.

Thus, the neo-logicist is committed to the three positions here outlined. His

commitment to the epistemic priority of second-order logic allows the admission of

(A) into epistemically warranted judgments. His commitment to the abstraction

principle schema AP—in particular the abstraction principle HP—permits the move

15The following uses the presentation of MacBride [38, p114], but it replicates Frege’s original
procedure for defining (if I may be permitted a rough characterization) the number zero as that
which is equinumerous with the empty set.
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to (B), and his view of the connection between language and reality permits the move

to (C). Only by each of these inferences is the neo-logicist able to prove the existence

of numbers and obtain the desired result.

5.1.3 Proof of the Consistency of HP with Second-Order

Logic

An immediate question arises for the neo-logicist program: how can we know that HP

and second-order logic will not lead to another contradiction like Basic Law V and

second-order logic did? How is one assured that the resultant system is consistent?

As Boolos vividly writes, “How do we know that some Super-Russell of the 22nd

Century won’t find some ingenious derivation of a contradiction from the number

principle, the way our Russell derived a contradiction from the set principle” [7, p.

151]?

Boolos provides a proof that consistency of his Frege Arithmetic(FA)—the system

within which Boolos is able to reconstruct Frege’s program in the Grundlagen—is

equiconsistent the strictly weaker theory of analysis as constructed out of the natural

numbers via the rationals.16 That is, Boolos proves that FA is consistent if and only if

analysis is consistent. I will focus on the proof in which Boolos provides a constructive

account of how a proof of ⊥ in FA can be directly translated into a proof in analysis

of ⊥, since analysis is not the theory in question.

The proof proceeds by first demonstrating a model M for HP that also satisfies

the principles of second-order logic. We must give a characterization of FA and then

interpret those notions within ZF, and then finally translate this interpretation into

an interpretation in analysis. This final step must be done by changing the domain

from U = {0, 1, 2, . . . ,ℵ0} in ZF to U = {0, 1, 2, . . .} in analysis, while rejiggering

16It should be noted that Boolos’s proof builds on ideas in Hodes [32] and Burgess [9], but I will
focus on Boolos’s proof in [3]
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some of the related notions.

FA, recall, is the system generated by the conjunction of HP with second-order

logic, so the fundamental objects of FA will be nearly identical to the fundamental

objects of second-order logic. There are three types of variables: object variables

(a, b, c, . . .m, n, o, . . . x, y, z), unary-predicate variables (F,G,H, . . . , R, S, T, . . .), and

binary-predicate variables (ϕ, ψ, . . .). These variables are simply the standard com-

ponents of second-order logic, with an added restriction of predicate variables to only

two places. The only non-logical component of FA is dubbed by Boolos as ‘η’, “a

two-place predicate letter attaching to a concept variable and object variable. (η

is intended to be reminiscent of ∈ and may be read ‘is in the extension.’ ”[3, p.

185] Atomic formulas are the standard ones in second-order logic, plus formulas of

the form ‘Fηx’, and these formulas can be combined in the usual ways by the usual

connectives. The final part of FA is the only non-logical axiom:17

∀F∃!x∀G(Gηx↔ F eq G) (Numbers)

Notice that Numbers is a formal analogue of Hume’s Principle. Numbers is the claim

that there is the unique object x that is the extension of some higher level concept

that G falls under. In the case of Hume’s Principle, that higher level concept is

marked out by a unary function sign ‘N’, which has as its domain concept variables

and its range object variables. Thus, ‘NF ’ should be read as ‘the number of F s’.

So, to demonstrate a model of Hume’s Principle and second-order logic in ZF set

theory, let the domain of the model be U = {0, 1, 2, . . . ,ℵ0}. We can interpret the

concept variables as subsets of U and similarly interpret the binary predicate variables

as sets of ordered pairs.18 η is easily rendered as ∈. The last to be interpreted is the

17‘eq’ here means equinumerous.
18This second interpretation can be generalized for arbitrary n-ary predicate variables.
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function letter ‘N’, which we are able to interpret as the cardinality of a set. Thus,

the number of things falling under a concept in FA becomes the cardinality of the set

in ZF. The proof of the truth of Hume’s Principle in M follows almost immediately

thereafter.19

The key to the success of this model is the fact that the cardinality of any of

the subsets of U is in U itself. Because this fact fails to be true for the restricted

domain of the natural numbers, we were forced to include ℵ0. However, this presents

a problem for the attempt to give a model in analysis, as the domain of analysis is

only the subsets of the natural numbers. We cannot use ℵ0 as a point in the model.

The trick, however, is to reconsider ℵ0 as zero—what Boolos calls “coding”—and

the remaining numbers as their successor (that is, n as n + 1). Boolos outlines the

translative procedure by which to convert any proof of ⊥ in FA into a proof of ⊥

in analysis[3, p.190], but he presents a more dialectically clear—if less rigorous—

version in “Gottlob Frege and the Foundations of Arithmetic”[7] In §5.3.2, I will

present in detail that argument to highlight where a Poincaréan petitio seems viable.

This objection will be equally applicable to both the more rigorous and less rigorous

versions. As such, I want to give a sketch of the rigorous proof of Boolos here.

The basic picture of the coding into analysis is that by interpreting ℵ0 as 0 and

every finite n as n + 1, one can give an expression of the relation “exactly z natural

numbers belong to the set F” through the analysis relation “there exists a one-one

correspondence between the natural numbers less than z and the members of F”[3, p.

190]. This expression becomes a way of expressing the FA relation ‘η’ as a notion of

analysis. Then, we are able to form the analysis analogue of Numbers by replacement:

∀F∃!x∀G(Eta(G, x)↔ F eq G) (Analogue)

19I pass over this proof to look more in detail at the analogous proof in analysis. Boolos performs
this proof on p. 188 of [3].
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By providing this translation of Numbers into analysis, combined with the fact that

the basic comprehension principles of second-order logic are provable in analysis, we

have a direct translation procedure for any proof of ⊥ in FA into analysis.

The contradiction arising from Basic Law V and second-order logic meant that

Frege forsaked his ambition of deriving mathematics from logic. The neo-logicist looks

to replace Basic Law V with HP and derives in FA an analog to Peano’s Postulates.

Finally, because of the threat of contradiction, the neo-logicist provides a proof of the

equiconsistency of FA with analysis. Having achieved this result and presuming that

the original argument of §5.1.2 is supported, the neo-logicist has achieved his goals.

We turn not to examine these goals in more detail.

5.2 Respective Goals of Logicism and Neo-Logicism

In the introduction to the collection Reason’s Proper Study, Hale and Wright briefly

describe the neo-logicist program:

. . . our efforts in the service of the neo-Fregean programme have, so far,
been concentrated . . . on the development and defence of the thesis that
arithmetic, as codified in the Dedekind-Peano axioms, does have a basis in
logic and definitions of a kind which, although not exactly as called for by
Frege’s conception of analyticity, coheres with and underwrites a soberly
platonistic conception of its ontology combined with an intelligible and
relatively inexpensive epistemology.[2, p.23]

This quotation highlights the three main theses for the neo-logicists: what I

will call the mathematical, the ontological, and the epistemic. They may each be

summarized thus:

Mathematical Thesis(MT) Arithmetic, as codified by the Peano Axioms, is deriv-

able in the system generated by adjoining Hume’s Principle to Second-Order

Logic.
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Ontological Thesis(OT) Numbers are mind independent, abstract objects.

Epistemic Thesis(ET) We possess a privileged knowledge of arithmetic through

our privileged access to second-order logic and HP.20

The mathematical thesis is so-called because it is a question of a systematic

proof within a system. Given that this result is purely technical and proven as a

logical consequence within a given system, it can be considered settled (positively)

by the work of the neo-logicists and Frege himself.21 As Wright says, “Frege did at

least establish a new mathematical foundation of number theory: a subsumption of

the laws for finite cardinal numbers under a single principle . . . The Dedekind-Peano

Famous Five can be reduced to One”[64, 273]. This goal is also the one which Frege

himself set out to outline in the Grundlagen and later hoped to prove formally in the

Grundgesetze, yet despaired over after Russell’s paradox.

The other two goals are also in accordance with Frege’s original intentions. Cer-

tainly, he held the ontological thesis that numbers were mind independent objects in

a Platonist sense. One need only look at his anti-psychologistic derision in the intro-

duction to the Grundlagen to understand his commitment to this ontological status of

numbers. Additionally, Frege’s project looked to provide an epistemic foundation for

mathematics—that the content of mathematics was derivable as a consequence from

basic principles of logic. Basic Law V was considered logical in nature, had Frege’s

derivation not been inconsistent, he would have shown a logical basis for mathemat-

ics and the privileged access we have to logic would guarantee privileged access to

mathematics.22

20I purposefully remain vague as to what I mean by “privileged knowledge” here. I will take up
the issue in §5.2.2

21This result was first noticed by Parsons [40], rediscovered independently by Wright [63], and
Boolos gives an in depth discussion in [3] and a rigorous proof in the appendix to [4]

22For a discussion of Frege’s epistemic and ontological goals, see Ebert and Rossberg [50].
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The neo-logicist, unlike Frege, faces an additional epistemic challenge. Even if we

grant that there is a special epistemic access to second-order logic, there is no prima

facie reason to grant the same access to HP; HP is not logical for the neo-logicist as

it was for Frege. For the logicist, it was a logical consequence of Basic Law V, which

was itself logical. . Therefore, the neo-logicist actually has two epistemic theses, one

weak and one strong:

Weak Epistemic Thesis (WET): Epistemic justification for HP is transferable

to all of arithmetic. The non-logical axioms of mathematics can be reduced to

HP.

Strong Epistemic Thesis (SET): HP is analytic and second-order logic is trans-

parent to us in a way different from arithmetic. Thus, knowledge of arithmetic

is a result of logical transparency and analyticity.

The weak epistemic thesis is of course, a reclothing of the mathematical thesis in

epistemic garb, though nonetheless important. It simplifies the non-logical commit-

ments of mathematics and allows consideration of the strong epistemic thesis in the

first place. Supposing that the weak epistemic thesis is settled, we need to address

the specifics of the ontological and strong epistemic theses and compare them with

the original goals of Frege.

5.2.1 Ontological Thesis

On first glance, it appears that the ontological thesis is proven by the neo-logicist’s

employment of abstraction principles to introduce number via their conception of

language and reality (recall §§5.1.2 – 5.1.2). Using abstraction principles, the neo-

logicist introduces new terms to the language that they claim cannot fail but to refer

to objects in the world; in some sense, it appears that they have “created” the very

things that witness the truth of OT.
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Such a claim seems to beg the question, for it looks as if what guarantees the exis-

tence of objects is the neo-logicist’s own conception of language and reality. Moreover,

the endorsement of the use of abstraction principles as a viable method for introduc-

ing new terms appears to have the fatal flaw of being ontologically inflationary.23

This objection has particular bite on the neo-logicist for the dilemma appears to be

to either accept that these principles introduce new things into the ontology (and

thus should not be regarded as definitional) or that they should be accepted as def-

initional and legitimately introducing new concepts (and thus not able to guarantee

the existence of independent mathematical objects).

The neo-logicist has a response that he takes to be in accordance with Frege’s

original position. While it is true that concepts are created via abstraction principles,

it is not the case that objects are created in this way. What happens is not an

ontological inflation but an ontological redivision, called alternatively a “carving”

(Hale, [24, 103]) or a “reconceptualization of the type of state of affairs depicted on

the right [of the abstraction principle]” (Wright, [65, 312]). The stipulation of, for

instance, HP does not create new ontologically unique objects but rather re-divides

what is already in existence into new arrangements. One is able to talk about the

“new” thing called a number because it is “new” in the conceptual sense—having just

been organized as such by a new concept—but fails to be new in an ontological sense.24

One analogy that may be useful is the assembly of furniture pieces. Combining four

legs and a flat surface makes a table that did not exist prior to assembly, but no new

physical (ontological) matter has been created.

23For a more detailed explanation of this objection, see MacBride [38], §5.
24MacBride argues that this response from the neo-logicist is not sufficient to address the concern

of what he calls the ‘rejectionist’, who may argue that the neo-logicist is making an un-substantiated,
yet significant, claim that two concepts—that on the right-hand side and that on the left-hand side
may be “necessarily correlated in the way in which the stipulation demands” [38, 126]. He attributes
this disagreement to fundamental differences in the conception of the relation of language to reality,
and even more fundamentally on whether metaphysical accounts of reality are tractable.
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5.2.2 Strong Epistemic Thesis

Strong Epistemic Thesis (SET): HP is analytic and second-order logic is trans-

parent to us in a way different from arithmetic. Thus, knowledge of arithmetic

is a result of logical transparency and analyticity.

Whereas the WET was simplification of epistemic commitments (from five Peano

Postulates to one), the SET acts as a bedrock epistemic principle upon which the

neo-logicist looks to reliably ground mathematical knowledge. Additionally, SET

serves as a means of support for the ontological thesis, as it describes the manner in

which we may come to know and have access to mind-independent abstract objects.

The argument given in §5.1.2 allows for privileged access to second-order logic to be

transmitted through abstraction principles and onto the newly carved out concepts;

in this way, the neo-logicist is able to answer how it is that one is able to come to

know Platonic numbers.

The neo-logicist owes an account of the form of the transparency of second-order

logic and of the analyticity of abstraction principles. For the latter, it is sufficient for

the neo-logicist to discuss the epistemic status of HP, rather than the overall status of

generalized abstraction principles. As MacBride notes, “And if the neo-logicist is not

simply to replace one mystery with another, a grasp of second-order logical truth and

consequence must be more epistemologically tractable than a grasp of mathematical

truth”[38, p. 136].

Second-order logic Though both second-order logic and HP require an epistemic

justification, it appears at first that the epistemic transparency of second-order logic

is more plausible.

In fact, the potential problem arises in the claim that second -order logic, as

compared to first-order logic, is epistemically basic and uncontestable. The neo-
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logicist needs to argue that “logic”, construed as second-order logic, retains the same

status as first-order logic. He needs to claim that second-order logic simply is logic.25

Objections have been raised that there fails to exist a firm distinction that separates

second-order logic from mathematics; second-order logic, according to this objection,

is inherently mathematical in nature, and alleging epistemic privilege for second-order

logic is tantamount to claim the same privilege for arithmetic.26

Hume’s Principle The second-epistemic claim the neo-logicist must make to sat-

isfy the SET is that HP is somehow epistemically basic. Wright claims that HP is,

in fact, analytic. However, the definition of analytic must be revised slightly from

the traditional one. First, it needs to account for attacks on the notion of analyticity

writ large, such as Quine’s ‘Two Dogmas of Empiricism’. But, leaving this issue to

the side, there still needs to be tightening up of HP and its status.

We have already touched on one of Wright’s responses to criticisms from Boolos

(the notion of recarving, rather than ontologically stipulating p. 117), and Wright

responds in kind to Boolos in “Is Hume’s Principle Analytic?”([65]).27 Wright distills

the issue to which Boolos objects:

. . . that Hume’s Principle may be laid down without significant epistemo-
logical obligation: that it may simply be stipulated as an explanation of the
meaning of statements of numerical identity, and that—beyond the issue
of the satisfaction of the truth-conditions it thereby lays down for such
statements—no competent demand arises for an independent assurance
that there are objects whose conditions of identity are as it stipulates.[65,
p. 321, emphasis in the original]

The problem that Boolos sees with this claim is that too much is being carried

by the notion of explanation.

25See §5.1.2
26Shapiro argues along these lines in [53], [57], and [56]. I will return to compare this objection

to a Poincaréan version in §5.3.1.
27We will return to Boolos’s ‘Bad Company’ objection in §5.3.2.
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However, it is hard to avoid the impression that more is meant, that
Wright holds that to call a statement an explanation of a concept is to
assign it an epistemological status importantly similar to the one it was
though analytic judgments, including definitions, enjoy. It is to this fur-
ther suggestion that I wish to demur[6, p. 310, emphasis in original].

The difficulty with such an objection is that it does not seem to meet the neo-logicist

head on. Boolos objects that there is some extra epistemological weight being granted

HP by calling it an explanation, and that it is upon this basis that HP gains the

status that the neo-logicist wants. However, this fails to be an objection insofar as it

is a reservation—if one buys into the neo-logicist project, such a concern will not be

troubling. Unless one share’s Boolos’s intuitive worry, one need not bear the same

concern. Because the neo-logicist is committed to a conception of how language and

reality are connected (§5.1.2), such a worry would have no effect on them. Indeed,

Wright even argues that if it is possible to gain an understanding of abstract entities

at all, then

. . . it has to be because we have so fixed the use of statements involv-
ing reference to and quantification over such entities as to bring the ob-
taining of their truth conditions somehow within our powers of recogni-
tion. . . something we did by way of determination of meaning. [65, p.
323]

Wright argues that unless one wants to dispense with the view of numbers as

abstracts, one has to accept something resembling the neo-logicist position.

The disagreement between Boolos and Wright seems to stem from a fundamental

disagreement about the status of language and reality. Given that, neither presents a

particularly strong reason for the rejection of their opponent or the adoption of their

own view. That there are disagreements about the intuitions is hardly surprising and

means that this particular point seems at an impasse.

The important point to recognize here is that much of the epistemic status of HP

stems largely from whether or not one believes the neo-logicist account of language’s
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inability to fail to mirror reality.

Whether or not one thinks the neo-logicist has done enough to demonstrate SET

(and therefore the entirety of his goal) depends on whether or not one shares the

neo-logicists’ starting intuitions. However, this problem is precisely why the WET

exists independent of SET. Regardless of the epistemic status of HP, the proof of

WET is a significant result in the foundations of mathematics.

5.3 Poincaréan objections posed to Neo-Logicism

This section shall focus on two potential Poincaréan style objections to be made

against the neo-logicist project. The first resembles the sophisticated petitio as de-

scribed by Goldfarb, wherein any formal system necessarily presupposes knowledge

of the principle of induction(see §4.2). The objection against the neo-logicist is that

second-order logic has a necessary sub-fragment comprised of first-order logic, the

foundational rules of which require determination by recursion. Moreover, these rules

are not merely descriptive as they were for the logicist but prescriptive in that they

establish the logic. Therefore, since induction is used in the establishment of the

system, the epistemic goals of the neo-logicist go unrealized. This particular objec-

tion is of a kind with Stuart Shapiro’s objection that second-order logic is, in fact,

mathematical in nature.

The second objection arises in the consistency proof of HP. This proof is required

because of the presence of bad-company objections that argue that because HP closely

resembles other abstraction principles that lead to contradiction, a verification of HP’s

legitimacy is required. In the proof of the equiconsistency of FA with analysis, there

is an application of induction in order to demonstrate that HP is true in a model of

analysis. Given that there is such an application, a mathematically ignorant subject

cannot come to be assured of the legitimacy of the stipulation of HP and thereby
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cannot gain mathematical knowledge out of nothing.

5.3.1 The Sophisticated Petitio and the Mathematical Qual-

ity of Second-Order Logic

The neo-logicist must claim both that second-order logic simply is logic (§5.1.2) and

that logic has a special epistemic status (§5.2.2); from these two claims, the neo-

logicist is able to derive mathematics from an assumption of Hume’s Principle, thereby

endowing mathematics with the epistemic standing of logic and HP.

However, Shapiro counters that there is no boundary between what should be

classed as “mathematical” and what should be classed as “logical” within second-

order logic. Second-order logic has, under a standard semantics, predicate variables

that range over the powerset of the domain of discourse (recall that Boolos’s trans-

lation of second-order logic into set theory had monadic predicates as analogous to

subsets of the domain). Thus, there appear to be set-like objects presupposed in the

notion of predication in second-order logic. Thus, Shapiro denies “that there is a

sharp boundary between mathematics and logic.”[56, p. 59]

If such a division cannot be made, the neo-logicist project is perilously in trouble,

as he would be ascribing to logic a special epistemic status and hoping to transmit that

warrant to mathematics via Frege’s Theorem. However, he would have presupposed

that mathematics had such a status when ascribing it to logic. Thus, a circle.

Here is the similarity to a Poincaréan petitio objection. The petitio at base is

an accusation of begging the question. It was an accusation against Hilbert and the

logicists that they were presupposing an understanding of number and elementary

arithmetic in their derivation of the Peano Postulates. Seen in this general light,

Shapiro’s objection that second-order logic is mathematical in nature is Poincaréan

in spirit.

122



One can make a slightly more focused objection that better resembles the original

petitio argument. Recall that the sophisticated petitio suggested by Goldfarb in §4.2

accused the logicists of presupposing number in the formation rules of the formal

system. This particular objection did not effect the logicists because the logicist

explicitly denies a meta-theoretical perspective from which to make the argument.

The same defense cannot be argued for the neo-logicist. Their rules for char-

acterizing the first-order fragment of second-order logic are recursive, and therefore

presuppose some notion of induction for a thinker. The employment of induction

for the comprehension of the formation rules within the system comes prior to the

question of whether second-order logic is fundamentally mathematical, prior even to

the question of the epistemic status of logic. In this sense, it is an objection made

before the logical system gets off the ground. The Poincaréan objection alleges that

the neo-logicist, in his recursive formation rules, has already presupposed knowledge

of number.

One particular aspect of the Shapiro objection is phrased by MacBride thus:

Semantics: in order to provide a semantic theory for second-order logic, a consider-

able body of mathematics must be called upon[38, p. 136]

MacBride suggests a response for the neo-logicist to this semantic objection that

seems extendable to defend against the petitio.

More importantly, there is a distinction to be drawn between the tools
one employs to investigate a given subject matter and the nature of the
subject matter itself. One cannot immediately conclude from the fact that
one has to employ tools of such and such a sort that the subject matter
itself concerns items of that sort [38, p. 137].

To extend this defense against the petitio, one could argue that induction is used

as a tool to understand and lay down the formation rules of logic does not mean that

logic presupposes mathematics or induction. The tools of comprehension should be

123



strictly separated from the subject matter itself.

This remark, however, does not seem successful on examination. There is a dis-

analogy between the objection lodged by Shapiro and this new petitio; namely, the

former is a concern leveled within the system, whereas the latter is made outwith

the logical system. Set theory may be used after the system is in place in order to

clarify and investigate more fully the theory in question, for instance, in investigating

questions of relative consistency. Shapiro emphasizes this practice as what mathe-

maticians commonly do in order to illuminate the nature of structures in question

[56]. In this way, the richer theory is used as a tool to examine the sub-theory.

But the employment of induction in the formation rules, however, is not such

an investigatory use. The use of induction does not serve as a method by which

mathematicians or logicians learn more about second-order logic; rather, it serves

as a way to introduce a fragment of second-order logic and bring about its proper

formation. Thus, it is not a tool used to investigate, but rather a tool used to create.

To that extent, when the questions of epistemic foundations are raised, it does beg

the question to claim that the neo-logicist can dismiss this concern as being merely a

confusion of the tools used to investigate the theory with the theory itself.

A second response given by MacBride to the semantic objection seems more

fruitful against both the semantic objection and the petitio objection. This response

claims that the reconstruction of mathematics does not rely on the totality of second-

order logic, which the neo-logicist might concede requires a full blown set-theoretic

semantics. Rather it only relies upon the “recursively enumerable fragment relevant

to the derivation of Frege’s theorem”[38, p. 139]. In this way, the neo-logicist denies

that the fragment within which he derives mathematics is necessarily mathematically

problematic.

A similar reply appears available to the petitio objection. The neo-logicist can

claim that the derivation of Frege’s Theorem need not rely on a full-blown under-
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standing of first-order or second-order logic. Rather, all that needs to be understood

are that the given formulae in the theorem are in fact well-formed, that the actual

derivation of the theorem is an acceptable chain of deductions, and so on. In this way,

the neo-logicist might be able to claim that induction is not used in the foundational

way as envisioned before.

The neo-logicist is even able to frame the petitio objection, if stretched and pulled

slightly, as a psychologistic objection. The neo-logicist could argue that the force of

this objection lies not in the logical presupposition of mathematics, but in the psy-

chological presupposition. An intuitive grasp of elementary arithmetical operations

is required to understand even what constitutes distinctness between formulae, pre-

supposing recursive definition. The notion of what constitutes a syntactically well-

formed formula supervenes on the ability to recognize that the recursive construction

of formulae—as laid out by the recursively enumerated fragment of second-order

logic—could continue on forever or rather that it need not stop at any given point.

This supervenience, the neo-logicist could offer, is psychological rather than logical.

Because he does not subscribe to psychological principles as fundamental as does

Poincaré, the objection holds no weight.

One need not accept psychological principles as basic in order for the neo-logicist

response to fail. Should one hold that the understanding of rules of derivation and

syntax in particular cases is parasitic on a generalized grasp of these rules, then the

neo-logicist response fails to be successful. In fact, MacBride suggest just such a

commitment by the neo-logicist:

Moreover, the neo-logicist may allow that a systematic understanding of
second-order logic requires the exercise of mathematical concepts whilst
nevertheless maintaining that a mathematical novice might follow the
proof of Frege’s theorem even when unable to explicitly formulate or the-
orise about the specific rules employed [38, p. 139].

Any mathematical novice who is so led through the proof must already have an
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understanding of recursive rules for the generation of formulae. This “novice” may

indeed fail to have a knowledge of the totality of second-order logic, but seems to

require having a knowledge of induction in order to understand that the derivation

she is being shown is, in fact, a derivation. Recognition that the proof of Frege’s

theorem is good depends upon a pre-understood notion of recursiveness and thereby

of induction. Indeed, the original response from the neo-logicist called upon the

“recursively enumerable fragment relevant to Frege’s Theorem.”

For the novice to recognize that the applications rules in the derivation of Frege’s

Theorem are instances of a general rule, the novice must first know the general rule.

For suppose that there are n many instances of modus ponens in the derivation. For

the novice to recognize these as n-many applications of the same rule—and not n-

many different individual rules—she must already know the general rule. If one thinks

that this idealized mathematical novice need not have an understanding of induction

prior to being shown the proof of Frege’s theorem, then there seems to be no problem

with the neo-logicist response. The neo-logicist owes an explanation of how the proof

of Frege’s Theorem is not circular.

5.3.2 Consistency Proofs and Bad Company Objections

Neo-logicism claims that via a use of HP, an abstraction principle, one is able to derive

knowledge of mind-independent abstract objects. Via stipulation of the principle and

knowledge of second-order logic, the strong epistemic thesis follows. More generally,

the neo-logicist claims that abstraction principles—one of which is HP—are legitimate

epistemic means by which to obtain knowledge of new terms on the left-hand side of

the principle via a grasp of the right-hand side, which is composed solely of terms

antecedently understood (see §5.1.2).

However, abstraction principles are not generally acceptable. For example, Hartry

126



Field has proposed the following principle:

(G) The God of x = the God of y iff x and y are spatio-temporally related.

Thus, proceeding in the same manner as the neo-logicist, Field claims that knowl-

edge that x and y are temporally related results in knowledge that the God of x is the

same as the God of y. Then, given the neo-logicist conception of language and reality,

Field can conclude the existence of God via existential generalization. Certainly, such

a result is anathema to the neo-logicist.

Though there is a response available for this sort of objection—the neo-logicist

can argue that the concept of “God” introduced in (G) is not of the omnipotent deity

in the sky but simply a “God” of spatio-temporal relation—there are more subtle

objections put forth by Boolos in the form of the Parity Principle (what Wright calls

the Nuisance Principle), an abstraction principle that is consistent with second-order

logic, yet is true only in finite domains:

(P) ∀F∀G (Parity(F ) = Parity(G) iff F and G differ evenly )

where differ evenly means that the objects falling under F and not G or G and

not under F is even and finite ([5, pp. 214-5]). Though neo-logicist has another

possible response to this objection by requiring conservativeness of abstraction prin-

ciples (see MacBride [38, p. 145]), the upshot is that the neo-logicist requires some

means of differentiating HP from those principles in the neighborhood that lead to

contradiction. One of the first requirements, of course, is the differentiation between

HP and Basic Law V.

To this end, the neo-logicist proves the consistency of HP with second-order logic.

More precisely, he proves the equiconsistency of Frege Arithmetic with analysis. We

have already outlined the proof in §5.1.3. The revised Poincaréan objection runs thus:
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1. The neo-logicist requires a proof of the consistency of HP with second-order
logic in order to differentiate it from the bad-company HP keeps.

2. One of the postulates derived within Frege Arithmetic to reconstruct arithmetic
is the principle of induction.

3. The proof given by Boolos on behalf of the neo-logicist employs an application
of the principle of induction.

4. Therefore, the neo-logicist fails to reduce the epistemic commitments of arith-
metic and fails to show the SET.

Claims 1 and 2 are straightforward descriptions of the status of HP and the

outcome of Frege’s Theorem. The onus for the Poincaréan objection is to demonstrate

1) that there is an application of induction within the proof of consistency and 2) that

such a use of induction is illicit insofar as it undercuts the epistemic simplification

that the neo-logicist wants to achieve. In order to accomplish this first goal, we turn

to look in detail at Boolos’s proof of the equiconsistency.

Induction in the Proof of Equiconsistency

Recall that Boolos provided a constructive account of how a proof of ⊥ in FA could

be translated into a proof of ⊥ in analysis. This process was done in part by demon-

strating how a model of FA could be constructed in ZF set theory, which in turn

could be coded into a model in analysis. Recall also that the difficulty in achieving

this coding was that in the model in ZF, we employed the notion of cardinality to

model the operator ‘Nx’ in FA, thereby requiring the expansion of the domain of the

model to include ℵ0. Such a move is not possible in analysis, where ℵ0 is not in the

domain of analysis.

In order to circumvent this difficulty, Boolos defines number by :

Number by If the number of F s is n, then the number by F s is n + 1, and if the

number of F s is infinite, then the number by F s is 0.
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So, for instance, the number by strikes in an at-bat in baseball is 4, the number

by US senators is 101, and the number by the even numbers is 0. We can now

reformulate HP into HPa, for analysis:

HPa The number by Fs = the number by Gs iff F 1-1 G

Having interpreted FA in analysis thus, Boolos must prove that HPa is true in

analysis. Assume first that the F s and the Gs are in a one-to-one correspondence.

There are either finitely many F s or infinitely many F s. If there are finitely many

F s, then ex hypothesi there is a mapping from F to G that is finite. Thus, if there

are n F s then there are n Gs. So,

the number by Fs = n+ 1 = the number by Gs

If there are infinitely many F s, then that means there are infinitely many Gs.

But this means that

the number byFs = 0 = the number byGs.

Thus, the right-to-left direction of the biconditional.

Assume now that the number by F s = the number by Gs. Either the number

by F s= 0 or the number by F s= n + 1, for some finite n. If the latter, then the

number of F s (in the standard interpretation) equals the number of Gs, and we can

create a mapping from a finite set to a finite set. If the former, then the number of

F s and Gs are both infinite. However, because the vocabulary of analysis consists

only of the natural numbers, we can establish a function mapping the least element

in the F s to the least element in the Gs, the second least in the F s to the second

least element in the Gs. Since they are both infinite, the process can continue to map

every F to only one G and vice versa. we have a one-to-one mapping and a one-to-one
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correspondence. Therefore, the left to right direction of the biconditional holds.28

However, this proof of the model has a number of applications of the principle of

induction. In the left to right direction, Boolos writes, “If [the number by F s = the

number by Gs] is positive, n+1, say, then there are n F s and n Gs and the F s and Gs

are in one-one correspondence.” Though true, this argument relies on mathematical

induction. The claim is that for any finite number n, for two concepts F and G, with

the number of F s = n = the number of Gs, then there is a mapping (one-to-one)

from F to G. To prove this claim, we show that there is a mapping in the base case

(between two concepts with only one item falling under each). Then, we show that

if we assume a mapping for concepts of size n, we can construct a mapping for sets

of size n + 1 simply by taking the pre-existing mapping for the first n objects and

extending it by mapping the remaining thing that is F to the remaining thing that is

G. Thus, we are able to conclude that a mapping can be made between two concepts

that have the same number by. Of course, this claim is merely an application of

induction.

Moreover, in addressing the possibility that the number by F s = the number by

Gs is infinite, Boolos writes,

But if the number [by] is 0, then there are infinitely many F s and in-
finitely many Gs. But in this case too, the F s and Gs are in one-one
correspondence: the least F corresponds to the least G, the second least
F to the second least G, the third least, etc. [7, p. 153].

But this “etc.” is precisely the conception of induction that Poincaré has in mind.

It is a recognition that the process described can be carried out indefinitely. One

recognizes that the procedure of mapping the least F to the least G, the second-

least F to the second-least G, and so on can continue indefinitely only because of an

intuitive grasp of induction. It is a grasp of the extensibility of the given procedure.

28This proof follows Boolos in [7, pp.152-3]. He writes there that he has “just shown how to inter-
pret analysis in analysis the result of adjoining the number principle to the system of Begriffsschrift”
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Should a neo-logicist feel compelled to be worried about this sort of inductive

procedure? Does he need to buy into Poincaré’s psychological conception of induc-

tion? It might be that the neo-logicist can dismiss Poincaré’s induction in this matter

as purely psychological, whereas Boolos’ and the neo-logicists’ concern is epistemic.

The neo-logicist might reply that while it is a psychological fact of our nature that we

must understand induction in order to recognize the truth of what Boolos writes, this

fact does not bear any epistemic weight. It is a concomitant fact, similar to Frege’s

view on the constancy of inkblots (p. 95)

That response, however, misses the point. The reason that Boolos’s proof has

any value at all to the neo-logicist is because it helps to mark out what is epistem-

ically responsible; it demonstrates that HP does not run afoul of any inconsistency.

However, part of the epistemic thesis that the neo-logicist wants to advance is that,

as MacBride writes,“(HP) may be employed to introduce a mathematically ignorant

subject (‘Hero’) to number theory”[38, p. 146]. Hero’s employment of this abstrac-

tion principle in some manner in order to verify that he is not actually employing an

illicit principle like Basic Law V. Note that this purpose is precisely why Boolos gives

his proof.

However, as a mathematically ignorant subject, Hero is not in a position to verify

the consistency of HP via Boolos’s proof, and therefore unable to even differentiate

HP (in terms of its consistency) from Basic Law V. Hero can blindly follow HP, but

he cannot assure himself of the safety of its use. The situation echoes the dilemma

for Hilbert’s program; if the neo-logicist wants to retain his stated goal of the SET—

simplifying the epistemic commitments of mathematics—then the prescribed method

for achieving that aim appears to fail.

MacBride notes a similar point and phrases it as a dilemma between an internal

and external justification; on the one hand, Hero’s use of HP cannot be justified

internally, as the mathematics required to provide epistemic safety are beyond Hero’s
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ability, while on the other had the attribution of external epistemic warrant to modes

of reasoning is implausible. Wright sketches a path between the internal and external

horns of the dilemma by noting that even uncontroversial notions of concept formation

or sense fixing run into similar problems (see Wright [64, pp.286-8]), so the issues

raised by this objection are more universal that first seems. However, he admits

that such reflections do “not excuse the Fregean the work of offering some principled

restriction where instances of [abstraction] may be excluded”[64, p. 288]. No such

internal, principled restrictions are on offer. Therefore, it appears that the dilemma

and the Poincaréan objection remains active.
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Chapter 6

Conclusion

This project declared a number of goals at the outset. Some were interpretive (e.g.

providing an interpretation of Poincaré’s ‘intuition’); some historical (showing why

the petitio was not effective against the logicists); and some looked to contribute to

ongoing debates (refocusing the petitio to the neo-logicist).

Chapter 2 argued for a novel interpretation of Poincaré, identifying four elements

of his psychologism that informed his conception of intuition, which in turn, informed

his notion of induction. The secondary goal was to demonstrate that Kant’s philos-

ophy of mathematics differed from Poincaré significantly, perhaps suggesting that a

Poincaréan philosophy of arithmetic is worthy of further investigation.

Chapter 3 addressed both Early and Later Hilbert with the petitio objection,

arguing that even under multiple interpretations of Hilbert’s project—a novel one of

which was advanced—a revised version of Poincaré’s objection still holds.

Chapter 4 argyed that the only way for the logicist to wriggle free of Poincaré’s

original objection was to hold a particular view of logic as all-encompassing and

universal—to deny any metatheory.

Finally, Chapter 5 argued that two forms of a Poincaréan objection are possible.

Moreover, because of particularities in the neo-logicist platform, the responses of
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the logicists are not available. These two reformulations were compared to extant

objections in the literature, and it was argued that the neo-logicist has not supplied

a potential response. As such, these objections remain viable.
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